
The Microarchitecture Level

The Microarchitecture Level
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC

The Microarchitecture Level

Contents

1. An Example Microarchitecture

2. An Example Instruction Set

3. Implementation of the Instruction Set

4. Improving Performance

Wolfgang Schreiner 1

The Microarchitecture Level

An Example Microarchitecture

Wolfgang Schreiner 2

The Microarchitecture Level

The Microarchitecture Level

Implementation of the ISA.

• Illustration by example:
– ISA: integer subset of Java Virtual Machine (IJVM).

– Microarchitecture: Mic.

•Microprogram:
– Implementation of each IJVM instruction.

– Controls data path of microarchitecture.

•Data path:
– 32 bit registers (PC, SP, MDR, . . .)

– Drive contents to B bus.

– Output of ALU drives shifter and then C bus.

– C bus value can be written to registers.

H

Shifter controlShifter

ALU

2

N

A B

B busC bus

6
ALU control

Control signals

Memory
control
registers

Enable onto B bus

Write C bus to register

To
and
from
main
memory

Z

SP

LV

CPP

TOS

OPC

PC

MDR

MAR

MBR

Wolfgang Schreiner 3

The Microarchitecture Level

ALU

ALU as presented in the previous section.

• ALU is controlled by six control lines.
– F0 and F1 determine operation.

– ENA and ENB enable inputs from bus A respectively bus B.

– INVA inverts input fromb bus A.

– INC adds 1 to the result of the operation.

F0 F1 ENA ENB INVA INC Function

0 1 1 0 1 0 Ā

1 1 1 1 0 0 A + B

1 1 1 0 0 1 A + 1

1 1 1 0 1 1 −A

0 0 1 1 0 0 A AND B

ALU can read and write same register in one cycle.
Wolfgang Schreiner 4

The Microarchitecture Level

Data Path Timing

Cycle 1
starts
here

Shifter
output
stable

Registers loaded
instantaneously from
C bus and memory on
rising edge of clock

Set up
signals
to drive
data path

ALU
and
shifter

Drive H
and
B bus

Propagation
from shifter
to registers

∆w ∆x ∆y ∆z

Clock cycle 1 Clock cycle 2

MPC
available
here

New MPC used to
load MIR with next
microinstruction here

Various phases within one clock cycle.

Wolfgang Schreiner 5

The Microarchitecture Level

Data Path Timing

Short pulse is produced at start of each clock cycle.

• Various subcycles:

1. Control signals are set up (∆w).

2. Registers are loaded onto the B bus (∆x).

3. The ALU and shifter operate (∆y).

4. The results propagate along the C bus to the registers (∆z).

• Subcycles are implicitly determined by circuit delays:
– Bits need time to become stable.

– ALU has some signal propagation time.

∗ Until ∆w + ∆x, ALU input is garbage.

∗ Until ∆w + ∆x + ∆y, ALU output is garbage.

Operation depends on rigid timing of all elements.
Wolfgang Schreiner 6

The Microarchitecture Level

Memory Operation

• 32-bit word-addressable memory port.
– Controlled by MAR (Memory Address Register) and MDR (Memory Data Register).

– MAR contains address of word (word 0, word 1, . . .) to be read into MDR.

– Reading and writing of ISA-level data words.

• 8-bit byte-addressable memory port.
– Controlled by PC (Program Counter).

– PC contains addresses of byte (byte 0, byte 1, . . .) to be read into low-order 8 bits of MBR.

– Sign extension of MBR (signed, unsigned) is determined by two control lines.

• Each register is driven by one or two control signals.
– Control signal that enables register’s output onto B bus (open arrow).

– Control signal that loads the register from the C bus (solid arrow).

– Reading and writing of ISA-level program (byte stream).

Wolfgang Schreiner 7

The Microarchitecture Level

Data Path Control

• 29 control signals determine data path.
– 9 signals to control writing data from C bus into registers.

– 9 signals to control enabling registers onto the B bus for ALU input.

– 8 signals to control ALU and shifter operation.

– 2 signals to indicate memory read/write via MAR/MDR (not shown).

– 1 signal to indicate memory fetch via PC/MBR (not shown).

• Signal values specify operations for one cycle of data path.
– Put values from registers to C bus, propagate signals through ALU and shifter on C bus, write

results into appropriate register(s).

•Memory read data signal is asserted in cycle k:
– Memory operation is started at end of cycle k (after MAR has been loaded).

– Memory data are available in MDR at the very end of cycle k + 1.

– Memory data can be used in cycle k + 2.

Wolfgang Schreiner 8

The Microarchitecture Level

Microinstructions

Can reduce number of bits needed for control.

Bits 9 3 8 9 3 4

NEXT_ADDRESS

Addr JAM ALU C Mem B

R
E
A
D

F
E
T
C
H

J
A
M
N

J
M
P
C

J
A
M
Z

S
L
L
8

S
R
A
1

F0 F1 E
N
A

E
N
B

I
N
V
A

I
N
C

H O
P
C

T
O
S

C
P
P

L
V

S
P

P
C

M
D
R

M
A
R

W
R
I
T
E

B
bus

B bus registers

0 = MDR
1 = PC
2 = MBR
3 = MBRU
4 = SP

5 = LV
6 = CPP
7 = TOS
8 = OPC
9 -15 none

•Only one of the nine registers can drive B bus.
– Only four bits are needed to select one of the registers (B).

– Decoder generates from four bit value one of the 9 output signals.

•Data path can be controlled by 24 signals.
– First part of a micro-instruction (ALU, C, Mem, B).

– Second part determines which micro-instruction is executed next (Addr, JAM).

Wolfgang Schreiner 9

The Microarchitecture Level

Microinstruction Control

Which control signals should be enabled on each cycle?

• Sequencer steps through microinstructions.

1. Determines state of every control signal.

2. Determines address of microinstruction to be executed next.

• Control store holds complete microprogram.
– Like program memory, but microinstructions instead of ISA instructions.

– 512 words containing 36-bit microinstructions.

– Each microinstruction determines next microinstruction to be executed.

•MPC (MicroProgram Counter), MIR (MicroInstruction Counter)
– MPC: Address of next microinstruction to be fetched from memory.

– MIR: Current microinstruction whose bits drive control signals of data path.

Wolfgang Schreiner 10

The Microarchitecture Level

Microarchitecture

H

Shifter

ALU

2

N

B bus

6

ALU
control

Control
signals

Memory control signals (rd, wr, fetch)

Enable
onto
B bus

Write
C bus
to register

Z

C bus

SP

LV

CPP

TOS

OPC

PC

MDR

MAR

MBR

9

O

512 × 36-Bit
control store
for holding

the microprogram

3

8

4-to-16
Decoder

2

9

4

MPC

MIR
Addr J ALU C M B

1-bit flip–flop

High
bit

JMPC

JAMN/JAMZ

Mic-1.

Wolfgang Schreiner 11

The Microarchitecture Level

Mic Operation

1. MIR is loaded from the word in control store pointed to by MPC.
• By ∆w, MIR is loaded.

2. Control signals propagate from MIR into the data path.
• One register is put onto the B bus.

• ALU is told which operation to perform.

• By ∆w + ∆x, ALU inputs are stable.

3. ALU and shifter execute.
• By ∆w + ∆x + ∆y, ALU and shifter output are stable.

4. Output is written into registers.
• By ∆w + ∆x + ∆y + ∆z, shifter output has reached registers and N and Z flip-flops.

After subcycle 4, MPC for next microinstruction is determined.

Wolfgang Schreiner 12

The Microarchitecture Level

Microinstruction Sequencing

Microinstructions are not implicitly sequenced.

• NEXT ADDRESS field is copied to MPC.
– Simultaneously, JAM field is inspected.

• Case: JAM=0.
– Nothing else is done.

• Case: JAM 6= 0.
– JAMN=1: 1-bit N flip-flop is ORed into high-order bit of MPC.

– JAMZ=1: 1-bit Z flip-flop is ORed into high-order bit of MPC.

– If both JAMN and JAMZ is set, both bits are ORed there.

– MPC[8] := (JAMZ AND Z) OR (JAMN AND N) OR NEXT ADDRESS[8].

MPC becomes NEXT ADDRESS (high-order bit potentially set to 1).

Wolfgang Schreiner 13

The Microarchitecture Level

Microinstruction Sequencing

• If JAMN/JAMZ bit is set, two successor instructions are possible.
– JAMN bit is set: successor instruction depends on value of N bit set by ALU.

∗ N Bit is set if ALU result is negative.

– JAMZ bit is set: successor instruction depends on value of Z bit set by ALU.

∗ Z Bit is set if ALU result is zero.

• If JMPC bit is set, 256 successor instructions are possible.
– MPC := NEXT ADDRESS || 0:MBR

…
…

Address Addr Data path control bits

One of
these
will follow
0x75
depending
on Z

JAM

JAMZ bit set0x75 0x92

0x92

0x192

001

Wolfgang Schreiner 14

The Microarchitecture Level

An Example Instruction Set

Wolfgang Schreiner 15

The Microarchitecture Level

Example ISA: IJVM

Instruction set to be interpreted by Mic microprogram.

• Stack: memory area for local variables.
– Local variables of methods cannot be stored at absolute addresses.

– Two invocations of methods may be active at same time (recursion).

– Local variables are organized in a stack-like fashion.

• Local variable frame: variables of “current” procedure activation.
– Determined by two registers LV and SP.

– LV points to the base of the local variable frame.

– SP points to the highest word of the frame.

– Variables are referred to by their offset from LV.

Programming languages are implemented with the use of stacks.

Wolfgang Schreiner 16

The Microarchitecture Level

Variable Stack

SP

LV

a3

a1

(a)

108

100
a2 104

SP

LV
a3

a1

(b)

a2

b3
b4

b1
b2

a3

a1

(c)

a2

b3
b4

LV c1
SP c2

b1
b2

LV
a3

a1

(d)

a2

d3
d4

SP d5

d1
d2

1. Program calls procedure A with three local variables (a1, a2, a3).

2. A calls procedure B with local variables (b1, b2, b3, b4).

3. B calls procedure C with local variables (c1, c2).

4. C and B return; A calls D with local variables (d1, d2, d3, d4, d5).

Variable frames are pushed on and popped of the stack.

Wolfgang Schreiner 17

The Microarchitecture Level

Operand Stack

Stack also holds operands during arithmetic computations.

LV

a3
SP a2

a1

(a)

a2
LV

a3
a2

SP a3

a1

(b)

a2
LV

a3
SP a2 + a3

a1

(c)

a2
LV

SP a3

a2 + a3

(d)

a2

a1 = a2 + a3;

1. Push a2 onto the stack.

2. Push a3 onto the stack.

3. Pop two words off the stack, add them, push result onto the stack.

4. Pop top word off the stack and store it in local variable a1.

Local variable frames and operand stacks are intermixed.

Wolfgang Schreiner 18

The Microarchitecture Level

The IJVM Memory Model

SP

LV

PC

CPP

Constant
Pool

Current
Operand
Stack 3

Current
Local

Variable
Frame 3

Local
Variable
Frame 2

Local
Variable
Frame 1

Method
Area

• Constant pool.

– Read-only memory for constants, strings, etc.

– Addressed by register CPP.

• Local variable frame.

– Memory for local variables of current method invocation.

– Addressed by register LV.

• Operand stack.

– Allocated on top of local variable frame.

– Top address denoted by register SP.

• Method area.

– Memory for program code.

– Current instruction denoted by register PC.

CPP, LV, SP address words; PC addresses bytes.
Wolfgang Schreiner 19

The Microarchitecture Level

The IJVM Instruction Set

Hex Mnemnonic Meaning

0x10 BIPUSH byte Push byte onto stack

0xA7 GOTO offset Unconditional branch

0x60 IADD Pop two words from stack; push their sum

0x64 ISUB Pop two words from stack; push their difference

0x9F IF ICMPEQ offset Pop two words from stack; branch if equal

0x15 ILOAD varnum Push local variable onto stack

0x36 ISTORE varnum Pop word from stack and store in local variable

0xB6 INVOKEVIRTUAL disp Invoke a method

0xAC IRETURN Return from method with integer value

. . .

Some instructions have an operand (memory offset, constant).

Wolfgang Schreiner 20

The Microarchitecture Level

Example j
�

2
j + k

�

3
j

�

10

k
i
6 7

3

4
i
5

j – 1
�

10 11
j

�1
j

�

98 14 1512
0

13

Java IJVM memnonic IJVM hexadecimal

i = j+k; 1 ILOAD j // i = j+k 0x15 0x02
if (i == 3) 2 ILOAD k 0x15 0x03

k = 0; 3 IADD 0x60
else 4 ISTORE i 0x36 0x01

j = j−1; 5 ILOAD i // if (i==3) 0x15 0x01
6 BIPUSH 3 0x10 0x03
7 IF ICMPEQ L1 0x9F 0x00 0x0D
8 ILOAD j // j = j−1 0x15 0x02
9 BIPUSH 1 0x10 0x01
10 ISUB 0x64
11 ISTORE j 0x36 0x02
12 GOTO L2 0xA7 0x00 0x07
13 L1: BIPUSH 0 // k = 0 0x10 0x00
14 ISTORE k 0x36 0x03
15 L2:

Wolfgang Schreiner 21

The Microarchitecture Level

INVOKEVIRTUAL

Pushed
parameters

Caller's
local
variable
frame

Stack before
INVOKEVIRTUAL

Stack after
INVOKEVIRTUAL

SP

SP

LV

LV

(a) (b)

Stack base
after

INVOKEVIRTUAL

Stack base
before

INVOKEVIRTUAL

Parameter 3
Parameter 2
Parameter 1

OBJREF
Previous LV
Previous PC Previous PC

Caller's
local

variables

Parameter 2
Parameter 1

Link ptr

Caller's
local

variables

Space for
caller's local

variables

Parameter 2
Parameter 1

Link ptr

Caller's LV
Caller's PC

Previous LV

Parameter 3
Parameter 2
Parameter 1

Link ptr

•Method invocation.

1. Push pointer to object.

2. Push method parameters.

3. Execute INVOKEVIRTUAL.

• INVOKEVIRTUAL disp:
– disp: position in constant pool.

– Contains start address of method.

∗ Actual method code starts at byte 5.

∗ Bytes 0–1: number of parameters; bytes 2-3: size of local variable frame.

1. Set SP to new top of stack.

2. Store old LV and old PC in frame.

3. Set LV to base of new frame.

4. Set PC to byte 4 in method code.

Wolfgang Schreiner 22

The Microarchitecture Level

IRETURN

Caller's
local
variable
frame

Stack before
IRETURN

Stack after
IRETURN

SP

SPLV

LV

(a) (b)

Stack base
before

 IRETURN

Stack base
after

 IRETURN

Parameter 3
Parameter 2
Parameter 1

Link ptr
Previous LV
Previous PC Previous PC

Caller's
local

variables

Caller's
local

variables

Parameter 2
Parameter 1

Previous LV
Return value

Previous PC

Link ptr

Caller's
local

variables

Parameter 2
Parameter 1

Link ptr

Previous LV
Return value

• Restores original state.

1. Deallocates space.

2. Restores stack to former state.

3. Places return value on top of stack.

4. Restores PC.

Execution continues with
instruction immediately after
INVOKEVIRTUAL.

Wolfgang Schreiner 23

The Microarchitecture Level

Implementation of the Instruction Set

Wolfgang Schreiner 24

The Microarchitecture Level

The MIC Microprogram

Use symbolic notation for micro-instructions.

• Text line specifies all activites that occur in single clock cycle.
– We want to increment the value of SP, to initiate a read operation, and to branch to the

microinstruction at location 122 in the control store.

• List the signals that are activated in clock cycle:

ReadRegister = SP, ALU = INC, WSP, Read, NEXT ADDRESS = 122

•We will use a shorter version:

SP = SP+1; rd

Micro assembly language MAL for writing micro-programs.

Wolfgang Schreiner 25

The Microarchitecture Level

The Mic Registers

• CPP, LV, and SP.
– Point to constant pool, local variable frame, and top of stack.

• PC (program counter)
– Holds address of next byte to be fetched from instruction stream.

•MBR (memory byte register)
– One byte register that holds the bytes of the instruction stream as they are interpreted.

• TOS (top of stack)
– Holds at beginning/end of each instruction value of the memory location pointed to by SP.

•OPC
– Temporary (scratch) register used, e.g., to save address of opcode for a branch instruction.

Wolfgang Schreiner 26

The Microarchitecture Level

The Main Interpreter

Label Operations Comments

Main PC = PC+1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch

• Increment the PC to point to the next opcode.
• Initiate a fetch of the next opcode into MBR.

– Will be needed as an operand or as the next opcode.

• Perform a multiway branch to the address contained in MBR.
– This is the value placed there by the previous microinstruction.

Micro-code for each IJVM instruction will return to Main.

Wolfgang Schreiner 27

The Microarchitecture Level

BIPUSH and GOTO

BYTEBIPUSH
(0×10)

Label Operations Comments

BIPUSH SP = MAR = SP+1 MBR = the byte to push onto stack

PC = PC+1; fetch Increment PC; fetch the next opcode

MDR = TOS = MBR; wr; goto Main Sign-extend constant and push on stack

GOTO OPC = PC−1 Save address of opcode

PC = PC+1; fetch MBR = 1st byte of offset; fetch 2nd byte

H = MBR << 8 Shift and save signed first byte in H

H = MBRU OR H H = 16-bit branch offset

PC = OPC+H; fetch Add offset to OPC

goto Main Wait for fetch of next opcode

Wolfgang Schreiner 28

The Microarchitecture Level

IADD and ISUB

Label Operations Comments

IADD MAR = SP = SP−1; rd Read in next-to-top word on stack

H = TOS H = top of stack

MDR = TOS = MDR+H; wr; goto Main1 Add top of two words; write to top of stack

ISUB MAR = SP = SP−1; rd Read in next-to-top word on stack

H = TOS H = top of stack

MDR = TOS = MDR−H; wr; goto Main1 Add top of two words; write to top of stack

Wolfgang Schreiner 29

The Microarchitecture Level

IF ICMPEQ

Label Operations Comments

IF ICMPEQ MAR = SP = SP−1; rd Read in next-to-top word of stack

MAR = SP = SP−1 Set MAR to read in new top-of-stack

H = MDR; rd Copy second stack word to H

OPC = TOS Save TOS in OPC temporarily

TOS = MDR Put new top of stack in TOS

Z = OPC−H; if (Z) goto T; else goto F If top 2 words are equal,

goto T, else goto F

Wolfgang Schreiner 30

The Microarchitecture Level

Improving Performance

Wolfgang Schreiner 31

The Microarchitecture Level

Improving Performance

Various basic techniques.

1. Cache memory.

2. Branch predication.

3. Out-of-order execution with register renaming.

4. Speculative execution.

The first three techniques do not change the architecture (old pro-
grams will still run, i.e., programs do not see a difference).

Wolfgang Schreiner 32

The Microarchitecture Level

Cache Memory

Cache: small fast memory that holds the most recently used words.

• Split cache: multiple caches with independent access to memory.
– Instruction cache: program words.

– Data cache: data words.

• Level 2 cache: cache between level 1 cache and memory.
– Memory accesses go first to L1 cache, then to L2 cache, then to memory.

Processor
board

CPU
package CPU chip

Keyboard
controller

Graphics
controller

Disk
controller

Main
memory
(DRAM)

L1-I L1-D

Unified
L2
cache

Unified
L3 cache

Split L1 instruction and data caches Board-level cache (SRAM)

Wolfgang Schreiner 33

The Microarchitecture Level

Locality Principles

Caches depend on locality to achieve their goal.

• Spatial locality:
– Memory locations with addresses numerically similar to recently accessed memory locations

are likely to be accessed in the near future.

– Effect on transfer policy: more data than have been requested are transferred from memory.

• Temporal locality:
– Recently accessed memory locations are accessed again (memory locations near the top of a

stack or instructions inside a loop).

– Effect on cache miss strategy: not recently accessed cache entries are discarded.

Considering these principles in program development may drastically
improve the performance of programs.

Wolfgang Schreiner 34

The Microarchitecture Level

Cache Principles

Basic principles of all caches.

• Cache line: fixed size (e.g. 32 bytes) memory block.
– Main memory is divided into lines: bytes 0–31, 32–63, . . .

– Some lines are in cache at any time.

•Memory word is referenced by program:
– Cache controller circuit checks whether the referenced word is in cache.

– If word is not there, some cache line is removed from cache.

– Needed line is fetched from memory (or lower level cache).

• Goal: keep most heavily-used lines in cache as much as possible.
– Maximize number of memory references satisfied out of cache.

Several variations of this scheme.

Wolfgang Schreiner 35

The Microarchitecture Level

Direct-Mapped Caches Valid

Entry

2047

Tag Data
Addresses that use this entry

(a)

(b)

Bits 16 11 3 2

TAG LINE WORD BYTE

65504-65535, 131040-131071, …

96-127, 65632-65663, 131068-131099
64-95, 65600-65631, 131036-131067, …
32-63, 65568-65599, 131004-131035, …
 0-31, 65536-65567, 131072-131003, …

7
6
5
4
3
2
1
0

Simplest form of caches.

• Each cache entry consists of:
– A Valid bit to indicate whether the entry has valid data.

– A Tag field consisting of a unique value identifiying the memory line.

– A Data field holding a cache line of 32 bytes.

• A given memory word can be stored in one place of the cache only.
– The LINE field of its address determines the index of the entry in the cache.

– The TAG field of its address can be used to check whether the right line is in that entry.

– The word field determines the position in the cache line.

Wolfgang Schreiner 36

The Microarchitecture Level

Set-Associative Caches

A word can be stored in a fixed number of places in the cache.

• n-way set-associative cache.
– There exist n possible entries for a cache line (usually n = 2 or n = 4).

• LRU (Least Recently Used) Algorithm.
– If a new cache entry is loaded, it replaces the least recently used of the n candidates.

Valid

Tag Data
2047

7
6
5
4
3
2
1
0

Entry A

Valid

Tag Data

Entry B

Valid

Tag Data

Entry C

Valid

Tag Data

Entry D

Wolfgang Schreiner 37

The Microarchitecture Level

Branch Prediction
1

In
st

ru
ct

io
n

Cycle 1 Cycle 2

Time

Cycle 3 Cycle 4

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

2

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

3

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B
4

IFU

ALU

Reg

Shifter

AC B

Modern computers are
highly pipelined.

•Data path is decomposed.
– Mic-2: Instruction Fetch Unit (IFU).

– Mic-3: Registers A, B, C.

• Pipelined design.
– Parts can be used simultaneously.

– Clock can be speed up.

∗ Maximum delay becomes shorter.

For good performance,
keep pipeline full.

Wolfgang Schreiner 38

The Microarchitecture Level

Branch Prediction

Actual code is full of branch instructions.

if (i == 0) CMP i,0 ; compare i to 0 Mic-4: seven stage pipeline
k = 1; BNE Else ; branch to Else if not equal

else Then: MOV k,1 ; move 1 to k
k = 2; BR Next ; branch to Next

Else: MOV k,2 ; move 2 to k
Next:

1

IFU

2

Decoder

3

Queue

4

Operands

5

Exec

6

Write
back

7

Memory

• Problem with unconditional branches (BR)
– Instruction decoding occurs in second stage when first stage already loads next instruction.

– Delay slot: instruction after branch is still executed (code has to be appropriately changed).

• Problem with conditional branches (BNE)
– Fetch unit does not know which instruction to load until much later in pipeline.

– Pipeline has to stall until it is known whether branch is taken or not.

Wolfgang Schreiner 39

The Microarchitecture Level

Branch Prediction

Dynamic branch prediction: CPU guesses whether branch is taken.

• Cache-like organized history table records conditional branches.

1. 1 bit: bit says whether branch was taken last time or not.

2. 2 bits: second bit says whether guess was true last time.

– Only if second bit is 0, first bit is changed.

– Consequence: first error (e.g. at end of loop) does not change prediction.

3. Prediction bits plus target address of last branch.

– For branch instructions with computed target addresses.

Valid

6
5
4
3
2
1
0

Branch/
no branch

Slot
Branch
address/tag

Target
address

(a)

Valid

6
5
4
3
2
1
0

Prediction
bits

Slot
Branch
address/tag

(c)

Valid

6
5
4
3
2
1
0

Prediction
bitsSlot

Branch
address/tag

(b)

Wolfgang Schreiner 40

The Microarchitecture Level

Out-of-Order Execution and Register Renaming

Modern CPUs are super-scalar.

•Multiple functional units are simultaneously fed by decode unit.
– In-order-execution: instructions are issued in the order they appear in program (1-2-3-4).

– Instruction 2 may depend on result of instruction 1 and has to wait.

– Instruction 3 may not depend on instruction 1 but now has to wait as well.

•Out-of-order execution:
– Decode unit may reorder instructions for feeding functional units (1-3-2-4).

– Problem: same register R may be written by 1 and 3.

• Register renaming: CPU has secret registers invisible to programs.
– Decode unit may change instructions to write to/read from secret registers.

– Instruction 3 is changed to write to S.

– Instruction 4 reading from R has to be changed to read from S.

Wolfgang Schreiner 41

The Microarchitecture Level

Speculative Execution

Out-of-order execution only operates within basic blocks.
evensum = 0;

oddsum = 0;

i = 0;

while (i < limit) {

k = i * i * i;
k = i * i * i;

if ((i/2) * 2) == 0)

evensum = evensum + k;

else

oddsum = oddsum + k;

}
(a) (b)

evensum = 0;

oddsum = 0;

i = 0;

while (i < limit)

if ((i/2) * 2) = = 0)

T F

evensum = evensum + k; oddsum = oddsum + k;

i = i + 1;
i = i + 1;

i >= limit

• Speculative execution: code is moved beyond block boundaries.
– Code may be executed before it is known to get needed.

– Both branches of conditional may execute simultaneously with block that computes condition.

Requires additional instructions and compiler support.
Wolfgang Schreiner 42

