
Reading List on Proof-Carrying-Code

Hans-Wolfgang Loidl

June 29, 2005

Reading List on Proof-Carrying-Code

[Abadi and Leino, 1997] Martin Abadi and Rustan Leino. A logic of object-
oriented programs. In Michel Bidoit and Max Dauchet, editors, TAP-
SOFT ’97: Theory and Practice of Software Development, 7th International
Joint Conference CAAP/FASE, Lille, France, volume 1214, pages 682–696,
Springer-Verlag, New York, N.Y., 1997.

Abstract: We develop a logic for reasoning about object-oriented programs. The
logic is for a language with an imperative semantics and aliasing, and accounts for
self-reference in objects. It is much like a type system for objects with subtyping,
but our specifications go further than types in detailing pre- and postconditions.
We intend the logic as an analogue of Hoare logic for objectoriented programs. Our
main technical result is a soundness theorem that relates the logic to a standard
operational semantics.

File: abadi98logic.ps.gz.

[Appel, 2001] Andrew W. Appel. Foundational Proof-Carrying Code. In
LICS’01 — Symposium on Logic in Computer Science, June 2001 URL:

http://www.cs.princeton.edu/ appel/papers/fpcc.pdf, File: Appel-fpcc.pdf.

[Aspinall et al., 2004a] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and
I. Stark. Mobile Resource Guarantees for Smart Devices. In CASSIS’04 —
Intl. Workshop on Construction and Analysis of Safe, Secure and Interoper-
able Smart Devices, LNCS, Marseille, France, March 10–13, 2004. Springer-
Verlag File: cassis2004.pdf.

[Aspinall et al., 2004b] David Aspinall, Lennart Beringer, Martin Hofmann,
Hans-Wolfgang Loidl, and Alberto Momigliano. A program logic for
resource verification. In Proceedings of 17th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs2004), volume
3223 of Lecture Notes in Computer Science, pages 34–49, Heidelberg,
September 2004. Springer-Verlag. Location: Park City, Utah URL:

http://groups.inf.ed.ac.uk/mrg/publications/mrg/tphol-paper.pdf.

1



[Berghofer and Nipkow, 2000] Stefan Berghofer and Tobias Nipkow. Proof
Terms for Simply Typed Higher Order Logic. In TPHOL’02 — Theorem
Proving in Higher Order Logics, volume 1869 of Lecture Notes in Computer
Science, pages 38–52, 2000.

Abstract: This paper presents proof terms for simply typed, intuitionistic higher
order logic, a popular logical framework. Unification-based algorithms for the com-
pression and reconstruction of proof terms are described and have been implemented
in the theorem prover Isabelle. Experimental results confirm the effectiveness of the
compression scheme.

URL: http://www4.informatik.tu-muenchen.de/ nipkow/pubs/tphols00.ps.gz,
File: berghofer-phols00.ps.gz.

[Chander et al., 2005] Ajay Chander, David Espinosa, Nayeem Islam, Peter
Lee, and George Necula. Enforcing Resource Bounds via Static Verification
of Dynamic Checks. In ESOP’05 — European Symposium on Programming,
volume 3444 of LNCS, pages 311–, Edinburgh, UK, April 4–8, 2005.

Abstract: We classify existing approaches to resource-bounds checking as static or
dynamic. Dynamic checking performs checks during program execution, while static
checking performs them before execution. Dynamic checking is easy to implement
but incurs runtime cost. Static checking avoids runtime overhead but typically in-
volves difficult, often incomplete program analyses. In particular, static checking is
hard in the presence of dynamic data and complex program structure. We propose a
new resource management paradigm that offers the best of both worlds. We present
language constructs that let the code producer optimize dynamic checks by placing
them either before each resource use, or at the start of the program, or anywhere
in between. We show how the code consumer can then statically verify that the op-
timized dynamic checks enforce his resource bounds policy. We present a practical
language that is designed to admit decidable yet efficient verification and prove that
our procedure is sound and optimal. We describe our experience verifying a Java
implementation of tar for resource safety. Finally, we outline how our method can
improve the checking of other dynamic properties.

File: Necula-ESOP05.pdf.

[Chang et al., 2002] Bor-Yuh Evan Chang, Karl Crary, Margaret DeLap,
Robert Harper, Jason Liszka, Tom Murphy VII, and Frank Pfenning. Trust-
less Grid Computing in ConCert. In GRID 2002: Third International Work-
shop on Grid Computing, volume 2536 of LNCS, Baltimore, MD, November
2002.

Abstract: We believe that fundamental to the establishment of a grid computing
framework where all (not just large organizations) are able to effectively tap into the
resources available on the global network is the establishment of trust between grid
application developers and resource donors. Resource donors must be able to trust
that their security, safety, and privacy policies will be respected by programs that
use their systems. In this paper, we present a novel solution based on the notion
of certified code that upholds safety, security, and privacy policies by examining
intrinsic properties of code. Certified code complements authentication and provides

2



a foundation for a safe, secure, and efficient framework that executes native code. We
describe the implementation of such a framework known as the ConCert software.

URL: http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/concert/www/papers/grid2002/grid2002.pdf,
File: TrustlessGrid.pdf.

[Colby et al., 2000] Christopher Colby, Peter Lee, and George C. Necula. A
Proof-Carrying Code architecture for Java. In CAV’00 — International Con-
ference on Computer Aided Verification, ACM Press, Chicago, IL, July 2000.

Abstract: In earlier work, Necula and Lee developed proof-carrying code(PCC) [3,
5], which is a mechanism for ensuring the safe behavior of programs. In PCC, a pro-
gram contains both the code and an encoding of an easy-to-check proof. The valid-
ity of the proof, which can be automatically determined by a simple proof-checking
program, implies that the code, when executed, will behave safely according to
a user-supplied formal definition of safe behavior. Later, Necula and Lee demon-
strated the concept of a certifying compiler[6, 7]. Certifying compilers promise to
make PCC more practical by compiling high-level source programs into optimized
PCC binaries completely automatically, as opposed to depending on semi-automatic
theorem-proving techniques. Taken together, PCC and certifying compilers provide
a possible solution to the code safety problem, even in applications involving mobile
code [4]. In this paper we describe a PCC architecture comprising two tools: (1) A
thin PCC layer implemented in C that protects a host system from unsafe software.
The host system can be anything from a desktop computer down to a smartcard.
The administrator of the host system specifies a safety policy in a variant of the
Edinburgh Logical Framework (LF) [1]. This layer loads PCC binaries, which are
Intel x86 ob ject files that contain a section providing a binary encoding of a safety
proof, and checks them against the safety policy before installing the software. (2)
A software-development tool that produces x86 PCC binaries from Java classfiles.
It is implemented in Objective Caml [2]. From a developer’s perspective, this tool
works just like any other compiler, with an interface similar to javac or gcc. Behind
the scenes, the tool produces x86 machine code along with a proof of type safety
according to the Java typing rules.

URL: http://raw.cs.berkeley.edu/Papers/cav00.ps, File: colby-cav00.ps.

[Crary and Weirich, 2000] K. Crary and S. Weirich. Resource Bound Certifica-
tion. In POPL’00 — Symposium on Principles of Programming Languages,
pages 184–198,, Boston, MA, January 2000.

Abstract: Various code certification systems allow the certification and static ver-
ification of important safety properties such as memory and control-flow safety.
These systems are valuable tools for verifying that untrusted and potentially ma-
licious code is safe before execution. However, one important safety property that
is not usually included is that programs adhere to specific bounds on resource con-
sumption, such as running time. We present a decidable type system capable of
specifying and certifying bounds on resource consumption. Our system makes two
advances over previous resource bound certification systems, both of which are nec-
essary for a practical system: We allow the execution time of programs and their
subroutines to vary, depending on their arguments, and we provide a fully automatic
compiler generating certified executables from source-level programs. The principal

3



device in our approach is a strategy for simulating dependent types using sum and
inductive kinds.

URL: http://www-2.cs.cmu.edu/ crary/papers/1999/res/res.ps.gz, File: Crary-

resbound.ps.

[Dem, 2005] Touchstone online demo, June 2005 URL:

http://raw.cs.berkeley.edu/Ginseng/Images/pccdemo.html.

[Hofmann and Jost, 2003] M. Hofmann and S. Jost. Static Prediction of Heap
Space Usage for First-Order Functional Programs. In POPL’03 — Symposium
on Principles of Programming Languages, volume 38, pages 185–197, New
Orleans, LA, USA, January 2003. ACM Press.

Abstract: We show how to efficiently obtain linear a priori bounds on the heap
space consumption of first-order functional programs. The analysis takes space reuse
by explicit deallocation into account and also furnishes an upper bound on the heap
usage in the presence of garbage collection. It covers a wide variety of examples in-
cluding, for instance, the familiar sorting algorithms for lists, including quicksort.
The analysis relies on a type system with resource annotations. Linear program-
ming (LP) is used to automatically infer derivations in this enriched type system.
We also show that integral solutions to the linear programs derived correspond to
programs that can be evaluated without any operating system support for memory
management. The particular integer linear programs arising in this way are shown
to be feasibly solvable under mild assumptions.

File: hofmann-jost.ps.

[Hofmann, 1998] M. Hofmann. Semantik und Verifikation. Lecture Notes, 1998,
TU Darmstadt.

[Hofmann, 2000] Martin Hofmann. A type system for bounded space and func-
tional in-place update. Nordic Journal of Computing, 7(4):258–289, 2000.

Abstract: We show how linear typing can be used to obtain functional programs
which modify heap-allocated data structures in place. We present this both as a
“design pattern” for writing C-code in a functional style and as a compilation pro-
cess from linearly typed first-order functional programs into malloc-free Ccode. The
main technical result is the correctness of this compilation. The crucial innov ation
over previous linear typing schemes consists of the introduction of a resource type
D which controls the number of constructor symbols such as consin recursive defini-
tions and ensures linear space while restricting expressive power surprisingly little.
While the space efficiency brought about by the new typing scheme and the compi-
lation into C can also be realised by with state-of-the-art optimising compilers for
functional languages such as Ocaml[16], the present method provides guaranteed
bounds on heap space which will be of use for applications such as languages for
embedded systems or automatic certification of resource bounds. We show that the
functions expressible in the system are precisely those computable on a linearly
space-bounded T uring machine with an unbounded stack. By a result of Cook this
equals the complexity class ’exponential time’. A tail recursive fragment of the lan-
guage captures the complexity class ’linear space’. We discuss various extensions, in

4



particular an extension with FIFO queues admitting constant time catenation and
enqueuing, and an extension of the type system to fully-fledged intuitionistic linear
logic.

URL: http://www.dcs.ed.ac.uk/home/mxh/nordic.ps.gz, File: dia-

mond paper.ps.gz.

[Huisman and Jacobs, 2000] M. Huisman and B. Jacobs. Java Program Verfi-
cation via a Hoare Logic with Abrupt Termination. In T. Maibaum, editor,
FASE’00 — Fundamental Approaches to Software Engineering, volume 1783
of LNCS, pages 284–303. Springer-Verlag, 2000.

Abstract: This paper formalises a semantics for statements and expressions (in se-
quential imperative languages) which includes non-termination, normal termination
and abrupt termination (e.g. because of an exception, break, return or continue).
This extends the traditional semantics underlying e.g. Hoare logic, which only distin-
guishes termination and non-termination. An extension of Hoare logic is elaborated
that includes means for reasoning about abrupt termination (and side-effects). It
prominently involves rules for reasoning about while loops, which may contain ex-
ceptions, breaks, continues and returns. This extension applies in particular to Java.
As an example, a standard pattern search algorithm in Java (involving a while loop
with returns) is proven correct using the proof-tool PVS.

URL: http://www.cs.kun.nl/ bart/PAPERS/FASE00.ps.Z, File: FASE00.ps.

[Klein and Nipkow, 2004] Gerwin Klein and Tobias Nipkow. A machine-checked
model for a Java-like language, virtual machine and compiler. Technical Re-
port 0400001T.1, National ICT Australia, Sydney, March 2004 File: jinja.pdf.

[Kleymann, 1999] Thomas Kleymann. Hoare Logic and VDM: Machine-
Checked Soundness and Completeness Proofs. PhD thesis, LFCS, 1999.

Abstract: Investigating soundness and completeness of verification calculi for im-
perative programming languages is a challenging task. Many incorrect results have
been published in the past. We take advantage of the computer-aided proof tool
LEGO to interactively establish soundness and completeness of both Hoare Logic
and the operation decomposition rules of the Vienna Development Method (VDM)
with respect to operational semantics. We deal with parameterless recursive proce-
dures and local variables in the context of total correctness. As a case study, we use
LEGO to verify the correctness of Quicksort in Hoare Logic. As our main contribu-
tion, we illuminate the rle of auxiliary variables in Hoare Logic. They are required
to relate the value of program variables in the final state with the value of program
variables in the initial state. In our formalisation, we reflect their purpose by inter-
preting assertions as relations on states and a domain of auxiliary variables. Fur-
thermore, we propose a new structural rule for adjusting auxiliary variables when
strengthening preconditions and weakening postconditions. This rule is stronger
than all previously suggested structural rules, including rules of adaptation. With
the new treatment, we are able to show that, contrary to common belief, Hoare
Logic subsumes VDM in that every derivation in VDM can be naturally embedded
in Hoare Logic. Moreover, we establish completeness results uniformly as corollaries
of Most General Formula theorems which remove the need to reason about arbitrary
assertions.

5



URL: http://www.lfcs.informatics.ed.ac.uk/reports/98/ECS-LFCS-98-392/ECS-

LFCS-98-392.pdf, File: PhD-Kleymann.pdf.

[Leino, 1998a] K. Rustan M. Leino. Recursive object types in a logic of object-
oriented programs. Nordic Journal of Computing, 5(4):330–360, 1998.

Abstract: This paper formalizes a small object-oriented programming notation.
The notation features imperative commands where objects can be shared (aliased)
and is rich enough to allow subtypes and recursive object types. The syntax, type
checking rules, axiomatic semantics, and operational semantics of the notation are
given. A soundness theorem showing the consistency between the axiomatic and
operational semantics is also given. A simple corollary of the soundness theorem
demonstrates the soundness of the type system. Because of the way types, fields,
and methods are declared, no extra effort is required to handle recursive object
types.

File: leino98recursive.ps.gz.

[Leino, 1998b] K. Rustan M. Leino. Recursive object types in a logic of object-
oriented programs. Technical Note 1997-025a, Digital Systems Research Cen-
ter, Palo Alto, CA, January 1998, Superseded by [Leino, 1998a], but with
complete operational semantics and soundness proof.

Abstract: This paper formalizes a small object-oriented programming notation.
The notation features imperative commands where objects can be shared (aliased),
and is rich enough to allow subtypes and recursive object types. The syntax, type
checking rules, axiomatic semantics, and operational semantics of the notation are
given. A soundness theorem, showing the consistency between the axiomatic and
operational semantics is stated and proved. A simple corollary of the soundness
theorem demonstrates the soundness of the type system. Because of the way types,
fields, and methods are declared, no extra effort is required to handle recursive
object types.

URL: ftp://gatekeeper.research.compaq.com/pub/DEC/SRC/technical-

notes/SRC-1997-025a.ps.gz, File: leino97recursive.ps.gz.

[Leino, 2001] K. Rustan M. Leino. Applications of extended static checking. In
Patrick Cousot, editor, SAS’01 — International Static Analysis Symposium,
volume 2126 of LNCS, pages 185–193. Springer-Verlag, July 2001.

Abstract: Extended static checking is a powerful program analysis technique. It
translates into a logical formula the hypothesis that a given program has some
particular desirable properties. The logical formula, called a verification condition,
is then checked with an automatic theorem prover. The extended static checking
technique has been built into a couple of program checkers. This paper discusses
other possible applications of the technique to the problem of producing quality
software more quickly.

URL: http://www.research.compaq.com/SRC/personal/rustan/papers/krml106.ps,
File: krml106.ps.

6



[Mehta and Nipkow, 2005] Farhad Mehta and Tobias Nipkow. Proving pointer
programs in higher-order logic. Information and Computation, 2005, To ap-
pear File: ic05.ps.gz.

[Müller and Poetzsch-Heffter, 1999] P. Müller and A. Poetzsch-Heffter. A Pro-
gramming Logic for Sequential Java. In ESOP’99 — European Symposium
on Programming, LNCS, pages 208–225. Springer, 1999.

Abstract: A Hoare-style programming logic for the sequential kernel of Java is
presented. It handles recursive methods, class and interface types, subtyping, in-
heritance, dynamic and static binding, aliasing via object references, and encapsu-
lation. The logic is proved sound w.r.t. an SOS semantics by embedding both into
higher-order logic.

File: MuPo99.ps.

[Murphy VII et al., 2004] Tom Murphy VII, Karl Crary, Robert Harper, and
Frank Pfenning. A Symmetric Modal Lambda Calculus for Distributed Com-
puting. Technical Report CMU-CS-04-105, Carnegie Mellon University, 2004.

Abstract: We present a foundational language for distributed programming, called
Lambda 5, that addresses both mobility of code and locality of resources. In order to
construct our system, we appeal to the powerful propositions-as-types interpretation
of logic. Specifically, we take the possible worlds of the intuitionistic modal logic IS5
to be nodes on a network, and the connectives Box and Diamond to reflect mobility
and locality, respectively. We formulate a novel system of natural deduction for IS5,
decomposing the introduction and elimination rules for Box and Diamond, thereby
allowing the corresponding programs to be more direct. We then give an operational
semantics to our calculus that is type-safe, logically faithful, and computationally
realistic.

File: symmetric.ps.

[Necula and Lee, 1996] George C. Necula and Peter Lee. Proof-Carrying Code.
Technical Report CMU-CS-96-165, School of Computer Science, Carnegie
Mellon University Pittsburgh, PA, September 1996.

Abstract: This report describes Proof-Carrying Code, a software mechanism that
allows a host system to determine with certainty that it is safe to execute a pro-
gram supplied by an untrusted source. For this to be possible, the untrusted code
supplier must provide with the code a safety proof that attests to the code’s safety
properties. The code consumer can easily and quickly validate the proof without
using cryptography and without consulting any external agents. In order to gain
preliminary experience with proof-carrying code, we have performed a series of case
studies. In one case study, we write safe assembly-language network packet filters.
These filters can be executed with no run-time overhead, beyond a one-time cost
of 1 to 3 milliseconds for validating the attached proofs. The net result is that our
packet filters are formally guaranteed to be safe and are faster than packet filters
created using Berkeley Packet Filters, Software Fault Isolation, or safe languages
such as Modula-3. In another case study we show how proof-carrying code can be
used to develop safe assembly-language extensions of the a simplified version of the
TIL run-time system for Standard ML.

7



URL: http://www-2.cs.cmu.edu/ petel/papers/pcc/pcc-tr.ps, File: Lee-pcc-tr.ps.

[Necula and Lee, 1998a] G.C. Necula and P. Lee. Efficient Representation and
Validation of Proofs. In LICS’98 — Symposium on Logic in Computer Sci-
ence, Indianapolis, IN, 1998.

Abstract: This paper presents a logical framework derived from the Edinburgh
Logical Framework (LF) that can be used to obtain compact representations of
proofs and efficient proof checkers. These are essential ingredients of any application
that manipulates proofs as first-class objects, such as a Proof-Carrying Code system,
in which proofs are used to allow the easy validation of properties of safety-critical or
untrusted code. Our framework, which we call LFi, inherits from LF the capability to
encode various logics in a natural way. In addition, the LFi framework allows proof
representations without the high degree of redundancy that is characteristic of LF
representations. The missing parts of LFi proof representations can be reconstructed
during proof checking by an efficient reconstruction algorithm. We also describe an
algorithm that can be used to strip the unnecessary parts of an LF representation of
a proof. The experimental data that we gathered in the context of a Proof-Carrying
Code system shows that the savings obtained from using LFi instead of LF can
make the difference between practically useless proofs of several megabytes and
manageable proofs of tens of kilobytes. This paper is an abbreviated version of a
longer (70 pages) technical report. Read it if you want to see the detailed (15 pages)
proofs of soundness of the efficient proof-checking algorithm that is used in PCC.

URL: http://raw.cs.berkeley.edu/Papers/lfi lics98.ps, File: lfi lics98.ps.

[Necula and Lee, 1998b] George C. Necula and Peter Lee. Safe, Untrusted
Agents Using Proof-Carrying Code. In Special Issue on Mobile Agent Se-
curity, volume 1419 of LNCS. Springer-Verlag, 1998.

Abstract: This paper is intended to be both a comprehensive implementation guide
for a Proof-Carrying Code system and a case study for using PCC in a mobile agent
environment. Specifically, the paper describes the use of PCC for enforcing memory
safety, access control and resource usage bounds for untrusted agents that access a
database.

URL: http://raw.cs.berkeley.edu/Papers/pcc lncs98.ps, File: pcc lncs98.ps.

[Necula and Lee, 2000] George C. Necula and Peter Lee. Proof Genera-
tion in the Touchstone Theorem Prover. In CADE’00 — International
Conference on Automated Deduction, Pittsburgh, PA, June 2000 URL:

http://raw.cs.berkeley.edu/Papers/proofgen cade00.ps, File: proofgen cade00.ps.

[Necula and Schneck, 2002] George C. Necula and Robert R. Schneck. A
Sound Framework for Untrustred Verification-Condition Generators. In
LICS03 — Symposium on Logic in Computer Science, July 2002 URL:

http://raw.cs.berkeley.edu/Papers/vcgen lics03.pdf, File: vcgen lics03.pdf.

[Necula and Schneck, 2003] George C. Necula and Robert R. Schneck. A Sound
Framework for Untrustred Verification-Condition Generators. In LICS03
— IEEE Symposium on Logic in Computer Science, July 2003 File: vc-

gen lics03.pdf.

8



[Necula et al., 2004] George C. Necula, Jeremy Condit, Matthew Harren, Scott
McPeak, and Westley Weimer. CCured: Type-Safe Retrofitting of Legacy
Software. ACM Transactions on Programming Languages and Systems
(TOPLAS), 2004 File: ccured toplas.pdf.

[Necula, 1997] George Necula. Proof-carrying code. In POPL’97 — Symposium
on Principles of Programming Languages, Paris, France, January 1997.

Abstract: This paper describes proof-carrying code (PCC) a mechanism by which
a host system can determine with certainty that it is safe to execute a program
supplied (possibly in binary form) by an untrusted source. For this to be possible,
the untrusted code producer must supply with the code a safety proof that attests
to the code’s adherence to a previously defined safety policy . The host can then
easily and quickly v alidate the proof without using cryptography and without
consulting any external agents. In order to gain preliminary experience with PCC,
we have performed several case studies. We show in this paper how proof-carrying
code might be used to develop safe assembly-language extensions of ML programs.
In the context of this case study , we present and prove the adequacy of concrete
representations for the safety policy, the safety proofs, and the proof validation.
Finally, we briefly discuss how we use proof-carrying code to develop network packet
filters that are faster than similar filters developed using other techniques and are
formally guaranteed to be safe with respect to a given operating system safety
policy.

URL: http://raw.cs.berkeley.edu/Papers/pcc popl97.ps, File: pcc popl97.ps.

[Necula, 1998] George Necula. Compiling with Proofs. PhD
thesis, Carnegie Mellon University, September 1998 URL:

http://raw.cs.berkeley.edu/Thesis/thesis.pdf, File: PhD-Necula.pdf.

[Necula, 2001] George C. Necula. Proof and System Reliability, chap-
ter Proof-Carrying Code: Design and Implementation. Springer-Verlag,
2001 URL: http://raw.cs.berkeley.edu/Papers/marktoberdorf.pdf, File: Necula-

marktoberdorf.pdf.

[Nipkow, ] Tobias Nipkow. Jinja: Towards a comprehensive formal semantics for
a Java-like language. In H. Schwichtenberg and K. Spies, editors, Proc. Mark-
tobderdorf Summer School 2003. IOS Press, To appear File: mod2003.pdf.

[Nipkow, 2002] Tobias Nipkow. Hoare logics for recursive procedures and un-
bounded nondeterminism. In J. Bradfield, editor, Computer Science Logic
(CSL 2002), volume 2471 of Lecture Notes in Computer Science, pages 103–
119, 2002 File: csl02.pdf.

[O’Hearn et al., 2001] Peter O’Hearn, John Reynolds, and Hongseok Yang. Lo-
cal Reasoning about Programs that Alter Data Structures. In CSL’01 —
Annual Conference of the European Association for Computer Science Logic,
LNCS, pages 1–19, Paris, 2001. Springer-Verlag.

9



Abstract: We describe an extension of Hoare’s logic for reasoning about programs
that alter data structures. We consider a low-level storage model based on a heap
with associated lookup, update, allocation and deallocation operations, and unre-
stricted address arithmetic. The assertion language is based on a possible worlds
model of the logic of bunched implications, and includes spatial conjunction and
implication connectives alongside those of classical logic. Heap operations are ax-
iomatized using what we call the “small axioms”, each of which mentions only those
cells accessed by a particular command. Through these and a number of examples
we show that the formalism supports local reasoning: A specification and proof
can concentrate on only those cells in memory that a program accesses. This paper
builds on earlier work by Burstall, Reynolds, Ishtiaq and O’Hearn on reasoning
about data structures.

File: localreasoning.pdf.

[Oheimb and Nipkow, 2002] David von Oheimb and Tobias Nipkow. Hoare logic
for NanoJava: Auxiliary variables, side effects and virtual methods revis-
ited. In Lars-Henrik Eriksson and Peter Alexander Lindsay, editors, Formal
Methods – Getting IT Right (FME’02), volume 2391 of LNCS, pages 89–105.
Springer, 2002.

Abstract: We define NanoJava, a kernel of Java tailored to the investigation of
Hoare logics. We then introduce a Hoare logic for this language featuring an elegant
new approach for expressing auxiliary variables: by universal quantification on the
outer logical level. Furthermore, we give simple means of handling side-effecting
expressions and dynamic binding within method calls. The logic is proved sound
and (relatively) complete using Isabelle/HOL.

URL: http://isabelle.in.tum.de/verificard/Publications/NanoJava.ps.gz, File:

NanoJava.ps.

[Pfenning, 2001] Frank Pfenning. Logical Frameworks, chapter Chapter
16, pages 977–1061. Elsevier Science and MIT Press, 2001 URL:

http://www.cs.cmu.edu/ fp/papers/handbook00.pdf, File: LF-Pfenning.pdf.

[Reynolds, 1978] J. C. Reynolds. Syntactic control of interference.
In POPL’78 — Symp. on Princ. of Prog. Lang., 1978 URL:

ftp://ftp.cs.cmu.edu/user/jcr/syncontrol.ps.gz.

[Reynolds, 2002] J. Reynolds. Separation Logic: A Logic for Shared Mutable
Data Structures. In LICS’02 — Symposium on Logic in Computer Science,
Copenhagen, Denmark, July 22–25, 2002.

Abstract: In joint work with Peter O’Hearn and others, based on early ideas of
Burstall, we have developed an extension of Hoare logic that permits reasoning
about low-level imperative programs that use shared mutable data structure. The
simple imperative programming language is extended with commands (not expres-
sions) for accessing and modifying shared structures, and for explicit allocation
and deallocation of storage. Assertions are extended by introducing a “separating
conjunction” that asserts that its subformulas hold for disjoint parts of the heap,

10



and a closely related “separating implication”. Coupled with the inductive defini-
tion of predicates on abstract data structures, this extension permits the concise
and flexible description of structures with controlled sharing. In this paper, we will
survey the current development of this program logic, including extensions that
permit unrestricted address arithmetic, dynamically allocated arrays, and recursive
procedures. We will also discuss promising future directions.

URL: ftp://ftp.cs.cmu.edu/user/jcr/seplogic.ps.gz, File: seplogic.ps.gz.

[von Oheimb, 2001] David von Oheimb. Hoare logic for Java in Isabelle/HOL.
Concurrency and Computation: Practice and Experience, 13(13):1173–1214,
2001.

Abstract: This article presents a Hoare-style calculus for a substantial subset of
Java Card, which we call Java light. In particular, the language includes side-
effecting expressions, mutual recursion, dynamic method binding, full exception
handling, and static class initialization. The Hoare logic of partial correctness is
proved not only sound (w.r.t. our operational semantics of Java light, described in
detail elsewhere) but even complete. It is the first logic for an object-oriented lan-
guage that is provably complete. The completeness proof uses a refinement of the
Most General Formula approach. The proof of soundness gives new insights into
the role of type safety. Further by-products of this work are a new general method-
ology for handling side-effecting expressions and their results, the discovery of the
strongest possible rule of consequence, and a flexible Call rule for mutual recursion.
We also give a small but non-trivial application example. All definitions and proofs
have been done formally with the interactive theorem prover Isabelle/HOL. This
guarantees not only rigorous definitions, but also gives maximal confidence in the
results obtained.

URL: http://isabelle.in.tum.de/Bali/papers/CPE01.ps.gz, File: CPE01.ps.

[Wildmoser and Nipkow, 2004] Martin Wildmoser and Tobias Nipkow. Certi-
fying machine code safety: Shallow versus deep embedding. In K. Slind,
A. Bunker, and G. Gopalakrishnan, editors, Theorem Proving in Higher Order
Logics (TPHOLs 2004), volume 3223 of Lecture Notes in Computer Science,
pages 305–320, 2004 File: tphols04.pdf.

[Wildmoser and Nipkow, 2005] Martin Wildmoser and Tobias Nipkow. Assert-
ing Bytecode Safety. In ESOP’05 — European Symposium on Programming,
volume 3444 of LNCS, pages 326–, Edinburgh, UK, April 4–8, 2005.

Abstract: We instantiate an Isabelle/HOL framework for proof carrying code to
Jinja bytecode, a downsized variant of Java bytecode featuring objects, inheritance,
method calls and exceptions. Bytecode annotated in a first order expression lan-
guage can be certified not to produce arithmetic overflows. For this purpose we
use a generic verification condition generator, which we have proven correct and
relatively complete.

File: Necula-ESOP05.pdf.

11



[Wildmoser et al., 2004] Martin Wildmoser, Tobias Nipkow, Gerwin Klein, and
Sebastian Nanz. Prototyping proof carrying code. In J.-J. Levy, E. Mayer,
and J. Mitchell, editors, Exploring New Frontiers of Theoretical Informatics,
pages 333–347. Kluwer, 2004 File: tcs04.pdf.

[WWW, 2005a] Concert web page, June 2005 URL: http://www-

2.cs.cmu.edu/ concert/main.html.

[WWW, 2005b] Touchstone web page, June 2005 URL:

http://raw.cs.berkeley.edu/touchstone.html.

12


