
Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Proof-Carrying-Code
Applying formal methods in a distributed world

Hans-Wolfgang Loidl

LFE Theoretische Informatik, Institut für Informatik,
Ludwig-Maximilians Universität, München

July 1, 2005

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

1 Summary and Current Trends

2 Other Relevant Projects
ConCert/Hemlock
More Projects

3 Hands-on Session
The Touchstone Demo
The MRG infrastructure

4 The CCured Certifying Compiler

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Summary

PCC is a powerful, general mechanism for providing safety
guarantees for mobile code.

It provides these guarantees without resorting to a trust
relationship.

It uses techniques from the areas of type-systems, program
verification and logics.

It is a very active research area at the moment.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Current Trends

Using formal methods to check specific program properties.

Program logics as the basic language for doing these checks
attract renewed interest in PCC.

A lot of work on program logics for low-level languages.

Immediate applications for smart cards and embedded
systems.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Future Directions

Embedded Systems as a domain for formal methods.

Some of these systems have strong security requirements.

Formal methods are used to check these requirements.

Model checking is a very active area for automatically
checking properties.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Links to other areas

Checking program properties is closely related to inferring
quantitative information.

Static analyses deal with extracting quantitative information
(e.g. resource consumption)

A lot of research has gone into making these techniques
efficient.

Model checking can deal with a larger class of problems
(e.g. specifying safety conditions in a system)

Just recently these have become efficient enough to be used
for main stream programming.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

ConCert/Hemlock

An infrastructure for using PCC on Grids, developed by the group
of Peter Lee at CMU [1].

Based on earlier joint work with Necula on the concept of PCC.

Goal: use the computational power of a Grid architecture to
exploit parallelism and gain speedups.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Grid architectures

What is a Grid?

Grid is a type of parallel and distributed system that
enables the sharing, selection, and aggregation of
geographically distributed ”autonomous” resources
dynamically at runtime depending on their availability,
capability, performance, cost, and users’ quality-of-service
requirements.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Key features of Grid architectures

Transparent, decentralised use of resources.
The application doesn’t care where something is executed, as
long as the machine has the capabilities need to run the job.

Usage of open, standardised communication protocols

Non-trivial quality of service

But, the donator of a node in a Grid network may want to limit the
amount of compute cycles, memory etc, provided to the Grid
infrastructure.

=⇒ use PCC to check the resource usage!

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Hemlock

Hemlock is a certifying compiler for Grid/ML with threads
running on a Grid architecture.

Grid/ML is a functional subset of ML plus reference types.

As part of the ConCert system, compiled down to typed-assembly
language.

Thread primitives implement simple fork-and-join parallelism:

type ’a task
val spawn : (unit -> ’a) -> ’a task
val sync : ’a task vec -> ’a vec

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Summary

So far only basic ideas are worked out, no full infrastructure,
yet.

Demo of Hemlock/ConCert exists: fork-and-join parallelism,
but no certification

Current focus on foundational work on logics and fault
tolerance

For a flashy presentation of Hemlock see
http://www-2.cs.cmu.edu/ concert/talks/Murphy2003Hemlock/hemlock.swf

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Other relevant projects

Tinman: http://www.cs.utexas.edu/users/wjyu/tinman/

High-assurance JVM:
http://www.kestrel.edu/HTML/projects/java/

Verificard: http://www.verificard.org/

Hume: http://www.hume-lang.org/

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Further Reading

Bor-Yuh Evan Chang, Karl Crary, Margaret DeLap, Robert
Harper, Jason Liszka, Tom Murphy VII, and Frank Pfenning,
Trustless Grid Computing in ConCert, in GRID 2002 — Third
International Workshop on Grid Computing, November 2002.
LNCS 2536.

Aloysius K. Mok and Weijiang Yu, TINMAN: A Resource
Bound Security Checking System for Mobile Code in European
Symposium on Research in Computer Security, Zurich,
Switzerland, October 14–16, LNCS 2502, Springer-Verlag,
2002.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Hands-on Session

The final part of the lecture is a hands-on session for some of the
systems discussed earlier.

Goal: Get a deeper understanding about the systems by actually
working with them (continue off-line!).

Check of the state-of-the-art in terms of implemented systems.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Setup for running the code

Execute this script:

/zvol/formal/hwloidl/demosrc

or

export PATH=/zvol/formal/hwloidl/gnu/bin:\

/zvol/formal/hwloidl/j2sdk1.4.1_07/bin:$PATH

export LD_LIBRARY_PATH=/zvol/formal/hwloidl/gnu/lib:\

/zvol/formal/hwloidl/j2sdk1.4.1_07/lib:$LD_LIBRARY_PATH

Index of demos available here:
http://www.tcs.ifi.lmu.de/~hwloidl/tmp/demos.html

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Touchstone Overview

A PCC infrastructure for proving type safety of assembler code.

Based on the original work by Necula on PCC.

Demonstrates the most complete PCC infrastructure available.

Main features;

High-level language: Java

Encoding of proofs: LF Terms or Oracle strings

Hand written VCG

Twelf as proof checker

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Touchstone Overview

A PCC infrastructure for proving type safety of assembler code.

Based on the original work by Necula on PCC.

Demonstrates the most complete PCC infrastructure available.

Main features;

High-level language: Java

Encoding of proofs: LF Terms or Oracle strings

Hand written VCG

Twelf as proof checker

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

The Touchstone Demo

Start from this url:
http://raw.cs.berkeley.edu/Ginseng/Images/pccdemo.html

The demo itself gives a good discussion of what’s going on.

Click on components of the picture to get explanations.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

The MRG Infrastructure

This part is structured as follows (all on-line):

Background on inferring heap consumption for Camelot

Basics on operational semantics and program logic for Grail

Running the full demo on some examples

Goal:
Provide an infrastructure for independent and automatic
verification of resource certificates (for space), sent with mobile
code.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

A Proof-Carrying-Code Infrastructure for

MRG

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Components in the Infrastructure

On the producer side we have:
Camelot compiler:

Input: Camelot program

Output: JAR file with executables as class files and a
certificate

Automatic inference of space consumption

Automatic generation of a certificate (mainly loop invariants)

Note: It’s also possible to use Isabelle/HOL and “hack your
proofs”.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Components in the Infrastructure

On the producer side we have:
Camelot compiler:

Input: Camelot program

Output: JAR file with executables as class files and a
certificate

Automatic inference of space consumption

Automatic generation of a certificate (mainly loop invariants)

Note: It’s also possible to use Isabelle/HOL and “hack your
proofs”.

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Components in the Infrastructure

On the consumer side we have:

Isabelle running in batch mode as a proof checker

JVM for executing the code if it’s safe

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Example: Insertion sort (Camelot)

Camelot program:

let ins a l = match l with
Nil -> Cons(a,Nil)

| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with Nil -> Nil
| Cons(a,t)@_ -> ins a (sort t)

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Example: Insertion sort (Types)

Inferred space consumption:

ins : 1, int -> iList[0|int,#,0] -> iList[0|int,#,0], 0;
sort : 0, iList[0|int,#,0] -> iList[0|int,#,0], 0;
start : 0, list_1[string,#,1|0] -> unit, 0;

Certificate as Isabelle proof script for this specification:

Γ B snd (methtable InsSortM ins) :
J{a, l}, 1, [a 7→ I, l 7→ L(0)] I L(0), 0K

Γ B snd (methtable InsSortM sort) :
J{l}, 0, [l 7→ L(0)] I L(0), 0K

Γ B snd (methtable InsSortM start) :
J{l}, 0, [l 7→ L(1)] I (), 0K

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Executing Certified Code on Small Devices

Using a “delegated PCC” model, the certificate check can be done
by a powerful, trusted host, before code is executed on a small
device eg. PDA.
Goal:
Demonstrate usability of the infrastructure by executing the code
on a small, memory-constrained device (PDA).

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Characteristics of Small Devices

Characteristics of Small Devices:

Uses MIDP standard for small devices is MIDP with a reduced
Java class hierarchy.

All applications must interact with the user via a GUI.

For resource constrained devices: 16 or 32-bit at >16MHz
CPUs; >192kb for JVM; >32k for heap.

Verification is partially performed off-device.

Example: Sun’s KVM

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

CCured: The Idea

A system for checking pointer-safety of C programs, developed by
the group of George Necula at Berkeley.

System achieved pointer safety statically, where possible, and
minimise required run-time checks.

The type system distinguishes between 3 kinds of pointers:

Safe pointers: no arithmetic or casts

Sequence pointers: arithmetic but no casts

Dynamic pointers: casts, all bets are off!

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

CCured: The Idea

A system for checking pointer-safety of C programs, developed by
the group of George Necula at Berkeley.

System achieved pointer safety statically, where possible, and
minimise required run-time checks.

The type system distinguishes between 3 kinds of pointers:

Safe pointers: no arithmetic or casts

Sequence pointers: arithmetic but no casts

Dynamic pointers: casts, all bets are off!

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

The CCured Certifying Compiler

We will go through examples from the CCured tutorial:
http://manju.cs.berkeley.edu/ccured/tutorial.html

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Example: array-sum

This computes the sum over an array of integers:

int arrSum(int * p, int len) {
int sum = 0, i;
for(; len >= 0; len --, p ++) {

sum += *p;
}
return sum;

}

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Example: array-sum (inference)

Ccured infers p as an FSEQ pointer: a sequence pointer with only
positive pointer arithmetic:

int addAll(int *$_9$p &$_11$, int len) &$_10$;

*** Node 9.

Kind FSEQ : Positive Arithmetic : syntax on node 9 at ccuredcode.tmp/ex22.c:4

Flags:

* Positive Arithmetic : syntax on node 9 at ccuredcode.tmp/ex22.c:4

* Cannot be SAFE : Positive Arithmetic

Hans-Wolfgang Loidl Proof-Carrying-Code

Summary and Current Trends Other Relevant Projects Hands-on Session CCured

Example: array-sum (ccured code)

This is the “ccured” code for this function:

int addAll_f(fseqp_int p , int len)

{ int sum ;

int i ;

int __retres ;

{

sum = 0;

i = 0;

while (i < len) {

CHECK_FSEQARITH2SAFE((void *)p._p, p._ms._e, (void *)(p._p + i), sizeof(int),

sizeof(int), 1, 0);

sum = sum + (*(p._p + i));

i = i + 1;

}

__retres = sum;

return (__retres);

}

}
Hans-Wolfgang Loidl Proof-Carrying-Code

	Summary and Current Trends
	Other Relevant Projects
	ConCert/Hemlock
	More Projects

	Hands-on Session
	Touchstone
	MRG

	The CCured Certifying Compiler

