

PROOF-CARRYING-CODE

Applying formal methods in a distributed world

Hans-Wolfgang Loidl

LFE Theoretische Informatik, Institut für Informatik, Ludwig-Maximilians Universität, München

July 1, 2005

- **1** PCC FOR RESOURCES
- **2** CAMELOT: OUR HIGH-LEVEL LANGUAGE
- **3** Space Inference
- **4** GRAIL: OUR INTERMEDIATE LANGUAGE
- **6** A Program Logic for Grail
- 6 HEAP SPACE LOGIC
- **7** SUMMARY

Resource-bounded computation is one specific instance of PCC.

Safety policy: resource consumption is lower than a given bound.

Resources can be (heap) space, time, or size of parameters to system calls.

Strong demand for such guarantees for example in embedded systems.

・ 同 ト ・ ヨ ト ・

Grail Program Logic

Heap Space Logic

MOBILE RESOURCE GUARANTEES

Objective:

Development of an infrastructure to endow mobile code with independently verifiable certificates describing resource behaviour. **Approach:**

Proof-carrying code for **resource-related properties**, where proofs are generated from typing derivations in a **resource-aware type system**.

Project partners: LFCS, Univ of Edinburgh (D. Sannella) and Inst Informatik, LMU Univ, Munich (M. Hofmann). This work is funded by the EU under the IST-FET project *Mobile Resource Guarantees* No. IST-2001-33149.

Restrict the execution of mobile code to those adhering to a certain resource policy.

Application Scenarios:

- A user of a **handheld device** might want to know that a downloaded application will definitely run within the limited amount of memory available.
- A provider of computational power in a Grid infrastructure may only be willing to offer this service upon receiving dependable guarantees about the required resource consumption.

Our approach to PCC: Combine high-level type-systems with program logics and build a **hierarchy of logics** to construct a logic tailored to reason about resources.

Everything is formalised in a theorem prover.

Classic vs Foundational PCC: best of both worlds

- Simple reasoning, using specialised logics;
- **Strong foundations**, by encoding the logics in a theorem prover

・ 戸 ・ ・ 三 ・ ・

PROOF-CARRYING-CODE WITH HIGH-LEVEL-LOGICS

$$\begin{array}{c|c} \textit{High-Level Type System} & G \vdash_{\mathsf{H}} t : \tau \\ & \\ & \\ \textit{Specialised Logic} & \rhd \ulcorner t\urcorner : D(G,\tau) \\ & \\ & \\ \textit{Termination Logic} & \vdash_{\mathsf{T}} \{P\} e \downarrow \\ \textit{Program Logic} & & \\ & \\ & \\ \textit{Operational Semantics} & E \vdash h, e \Downarrow (h', v, p) \end{array}$$

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
MOTIVATING EXAMPLE OF THIS HIERARCHICAL
APPROACH

High-level language: ML-like.

Grail Progra

Program Logic

Heap Space Logic

Summary

Motivating Example of this Hierarchical Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

MOTIVATING EXAMPLE OF THIS HIERARCHICAL APPROACH

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate $h \models_t a$, expressing that an address a in heap h is the start of a (high-level) data-type t.

Grail Program

Program Logic

Heap Space Logic S

▲ 同 ▶ → 目 ▶

Summary

Motivating Example of this Hierarchical Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate $h \models_t a$, expressing that an address a in heap h is the start of a (high-level) data-type t.

Prove: $f :: \tau$ list $\rightarrow \tau$ list adheres to this safety policy.

Motivating Example of this Hierarchical Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate $h \models_t a$, expressing that an address a in heap h is the start of a (high-level) data-type t.

Prove: $f :: \tau$ list $\rightarrow \tau$ list adheres to this safety policy.

Directly on the program logic

$$\rhd f(x) : \lambda E h h' v . h \models_{list} E\langle x \rangle \longrightarrow h' \models_{list} v$$

Grail

Program Logic

(< ≥) < ≥)</p>

MOTIVATING EXAMPLE OF THIS HIERARCHICAL APPROACH

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate $h \models_t a$, expressing that an address a in heap h is the start of a (high-level) data-type t.

Prove: $f :: \tau$ list $\rightarrow \tau$ list adheres to this safety policy.

Directly on the program logic

$$\rhd f(x) : \lambda E h h' v . h \models_{list} E\langle x \rangle \longrightarrow h' \models_{list} v$$

NOT: reasoning on this level generates huge side-conditions.

Motivating Example of this Hierarchical Approach

Instead, define a higher-level logic \vdash_H that abstracts over the details of datatype representation, and that has the property

$$G \vdash_{H} t : \tau \implies \rhd^{\ulcorner} t^{\urcorner} : D(\Gamma, \tau)$$

Motivating Example of this Hierarchical Approach

Space Inference

Instead, define a higher-level logic \vdash_H that abstracts over the details of datatype representation, and that has the property

$$G \vdash_{H} t : \tau \implies \rhd^{\ulcorner} t^{\urcorner} : D(\Gamma, \tau)$$

Grail

Program Logic

Heap Space Logic

Summary

We specialise the form of assertions like this

PCC for Resources

Camelot

$$\begin{array}{ll} D(\{x : \textit{list}, y : \textit{list}\}, \textit{list}) &\equiv \\ \lambda E \ h \ h' \ v \ p. & h \models_{\textit{list}} E\langle x \rangle \ \land \ h \models_{\textit{list}} E\langle y \rangle \longrightarrow \\ h' \models_{\textit{list}} E\langle x \rangle \ \land \ h' \models_{\textit{list}} E\langle y \rangle \ \land \ h' \models_{\textit{list}} v \end{array}$$

Motivating Example of this Hierarchical Approach

Space Inference

Instead, define a higher-level logic \vdash_H that abstracts over the details of datatype representation, and that has the property

$$G \vdash_{H} t : \tau \implies \rhd^{\ulcorner} t^{\urcorner} : D(\Gamma, \tau)$$

Grail

Program Logic

Heap Space Logic

Summarv

We specialise the form of assertions like this

PCC for Resources

Camelot

$$\begin{array}{ll} D(\{x : \textit{list}, y : \textit{list}\}, \textit{list}) &\equiv \\ \lambda E \ h \ h' \ v \ p. & h \models_{\textit{list}} E\langle x \rangle \ \land \ h \models_{\textit{list}} E\langle y \rangle \longrightarrow \\ h' \models_{\textit{list}} E\langle x \rangle \ \land \ h' \models_{\textit{list}} E\langle y \rangle \ \land \ h' \models_{\textit{list}} v \end{array}$$

Now we can formulate rules, that match translations from the high-level language:

$$\frac{\square [t_1]: D(\Gamma, \tau \text{ list}) \quad \square [t_2]: D(\Gamma, \tau)}{\square [cons(t_1, t_2)]: D(\Gamma, \tau \text{ list})}$$

- Strict, first-order functional language with CAML-like syntax and object-oriented extensions
- Compiled to subset of JVM (Java Virtual Machine) bytecode (Grail)
- Memory model: 2 level heap
- Security: Static analyses to prevent deallocation of live cells in Level-1 Heap: linear typing (folklore + Hofmann), readonly typing (Aspinall, Hofmann, Konencny), layered sharing analysis (Konencny).
- Resource bounds: Static analysis to infer linear upper bounds on heap consumption (Hofmann, Jost).

< □ > < □ > < □ >

```
      PCC for Resources
      Camelot
      Space Inference
      Grail
      Program Logic
      Heap Space Logic
      Summary

      EXAMPLE:
      INSERTION SORT
```

```
Camelot program:
```

< □ > < □ > < □ >

Using operators, such as Cons, amounts to heap allocation.

Additionally, Camelot provides extensions to do **in-place operations** over arbitrary data structures via a so called **diamond type** \diamond with $\mathbf{d} \in \diamond$:

The memory occupied by the cons cell can be **re-used** via the diamond d.

Note:

- $\bullet \ \diamond \ is \ an \ abstract \ data-type$
- structured use of diamonds in branches of pattern matches

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary HOW DOES THIS FIT WITH REFERENTIAL TRANSPARENCY?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

```
PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
HOW DOES THIS FIT WITH REFERENTIAL
TRANSPARENCY?
Using a diamond type, we can introduce side effects:
```

```
type ilist = Nil | Cons of int*ilist
let insert1 x l =
    match 1 with Nil -> Cons (x, 1)
                 | Cons(h,t) @d \rightarrow
                     if x <= h then Cons(x, Cons(h,t)@d)
                                 else Cons(h, insert1 x t)@d
let sort l = match l with Nil -> Nil
                            | Cons(h,t) -> insert1 h (sort t)
Now, what's the result of
let start args = let 1 = [4,5,6,7] in
                   let 11 = insert1 \ 6 \ 1 \ in
                   print_list 1
                                                - 4 回 2 4 三 2 4 三 2 4
                                                                = 900
                  Hans-Wolfgang Loidl
                                   Proof-Carrying-Code
```


We can characterise the class of programs for which referential transparency is retained.

Theorem

A linearly typed Camelot program computes the function specified by its purely functional semantics (Hofmann, 2000).

But: linearity is too restrictive in many cases; we also want to use diamonds in programs where **only the last access to the data structure is destructive**.

But: linearity is too restrictive in many cases; we also want to use diamonds in programs where **only the last access to the data structure is destructive**.

More expressive type systems to express such access patterns are **readonly types** (Aspinall, Hofmann, Konecny, 2001) and types with **layered sharing** (Konecny 2003).

But: linearity is too restrictive in many cases; we also want to use diamonds in programs where **only the last access to the data structure is destructive**.

More expressive type systems to express such access patterns are **readonly types** (Aspinall, Hofmann, Konecny, 2001) and types with **layered sharing** (Konecny 2003).

As with pointers, diamonds can be a powerful gun to shoot yourself in the foot. We need a **powerful type system** to prevent this, and want a **static analysis** to predict resource consumption. **Goal:** Infer a linear upper bound on heap consumption.

```
Given Camelot program containing a function
```

```
start : string list -> unit
```

find linear function s such that start(I) will not call new() (only make()) when evaluated in a heap h where

- the freelist has length not less than s(n)
- I points in h to a linear list of some length n
- the freelist which forms a part of h is well-formed
- the freelist does not overlap with I

Composing start with *runtime environment* that binds input to, e.g., stdin yields a standalone program that runs within predictable heap space.

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
EXTENDED (LFD) TYPES

Idea: Weights are attached to constructors in an extended type-system.

ins : 1, int -> list(...<0>) -> list(...<0>), 0

says that the call ins x xs requires 1 heap-cell plus 0 heap cells for each Cons cell of the list xs.

sort : 0, list(...<0>) -> list(...<0>), 0

sort does not consume any heap space.

start : 0, list(...<1>) -> unit, 0;

gives rise to the desired linear bounding function s(n) = n.

(本部) (本語) (本語) (語)

A, B, C are types, $k, k', n, n' \in \mathbb{Q}^+$, f is a Camelot function and x_1, \ldots, x_p are variables, Σ is a table mapping function names to types.

$$\begin{split} & \Sigma(\texttt{f}) = (A_1, \dots, A_p, k) \longrightarrow (C, k') \\ & \frac{n \ge k \quad n - k + k' \ge n'}{\Gamma, \texttt{x}_1 : A_1, \dots, \texttt{x}_p : A_p, n \vdash \texttt{f}(\texttt{x}_1, \dots, \texttt{x}_p) : C, n'} \quad (\text{Fun}) \end{split}$$

PCC for Resources	Camelot	Space Inference	Grail	Program Logic	Heap Space Logic	Summary
GRAIL						

Characteristics of Grail (Guaranteed Resource Aware Intermediate Language):

- Abstract representation of virtual machine languages
- Language of dual identity: (impure) functional semantics and (object-oriented) imperative semantics via expansion to virtual machine code
- Syntactic restrictions on functions to obtain coincidence of semantics: no nesting; only tail-calls; λ -lifted; arguments and parameters must match
- Operational semantics with cost model E ⊢ h, e ↓ (h', v, p) relating expression e, environment E, (pre-)heap h, result v, (post-)heap h' and cost component

$$p = \langle clock \ callc \ invkc \ invkdpth \rangle.$$

Grail code:

```
method static public List ins (int a, List 1) = ...Make(..,..,.
method static public List sort (List 1) =
    let fun f(List 1) =
        if 1 = null then null
            else let val h = 1.HD
                val t = 1.TL
               val t = 1.TL
               val () = D.free (1)
               val 1 = List.sort (t)
               in List.ins (h, 1) end
        in f(1) end
```

This is a 1-to-1 translation of JVM code

- 4 回 2 - 4 □ 2 - 4 □

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
GRAIL: SYNTAX

$$\begin{array}{rcl} e \in expr & ::= & \operatorname{null} \mid \operatorname{int} i \mid \operatorname{var} x \mid \operatorname{prim} p \times x \mid \operatorname{new} c \left[t_1 := x_1, \dots, t_n := x_n \right] \mid \\ & \quad x.t \mid x.t := x \mid c \diamond t \mid c \diamond t := x \mid \operatorname{let} x = e \text{ in } e \mid e ; e \mid \\ & \quad \operatorname{if} x \text{ then } e \text{ else } e \mid \operatorname{call} f \mid x \cdot m(\overline{a}) \mid c \diamond m(\overline{a}) \\ a \in args & ::= & \operatorname{var} x \mid \operatorname{null} \mid i \end{array}$$

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Camelot

Space Inference

Grail Program

Program Logic F

Heap Space Logic

Summary

GRAIL: SEMANTIC DOMAINS

 $l \in Loc \equiv nat$ $r \in Ref ::= null |ref Loc$ $v \in Val \equiv int \cup Ref \cup \{\bot\}$ $\eta \in Env \equiv (iname \rightarrow int) \uplus (rname \rightarrow Ref)$ $h \in Heap \equiv (Loc \rightarrow cname)$ $(ifldname \rightarrow Loc \rightarrow int)(rfldname \rightarrow Loc \rightarrow Ref)$ $\mathbf{p} \in RRec \equiv nat \times nat \times nat \times nat$

Resources are an extra component in operational and axiomatic semantics ("resource record").

 $\mathbf{p} \in RRec = (|clock:nat,callcount:nat,invokedepth:nat,maxstack:nat)$

Resources are an extra component in operational and axiomatic semantics ("resource record").

 $p \in RRec = (clock : nat, callcount : nat, invokedepth : nat, maxstack : nat)$

We use the following shorthand notation: $\langle 1~0~0~0\rangle$ Operations on resource vectors are \oplus , as component-wise addition, and \smile :

 $(c, cc, id, ms) \smile (c', cc', id', ms') = (c + c', cc + cc', id + id', \max(ms, ms'))$

→ 御 → → 注 → → 注 →

Resources are an extra component in operational and axiomatic semantics ("resource record").

 $p \in RRec = (clock : nat, callcount : nat, invokedepth : nat, maxstack : nat)$

We use the following shorthand notation: $\langle 1~0~0~0\rangle$ Operations on resource vectors are \oplus , as component-wise addition, and \smile :

 $(c, cc, id, ms) \smile (c', cc', id', ms') = (c + c', cc + cc', id + id', \max(ms, ms'))$

Resource vectors can be generalised to abstract operations **resource algebras**.

▲御→ ▲注→ ▲注→

Two semantics for Grail:

- imperative: small-step call-by-value semantics, using a big state structure;
- functional: big-step call-by-value semantics, with side-effecting operations;
- A judgement in the functional operational semantics

 $E \vdash h, e \Downarrow_n (h', v, p)$

is to be read as "starting with a heap h and a variable environment E, the Grail code e evaluates in n steps to the value v, yielding the heap h' as result and consuming p resources."

・ 同 ト ・ ヨ ト ・ ヨ ト

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
OPERATIONAL SEMANTICS: LET- AND CALL-RULES

$$\frac{E \vdash h, e_1 \Downarrow_n (h_1, w, p) \quad w \neq \bot \quad E\langle x := w \rangle \vdash h_1, e_2 \Downarrow_m (h_2, v, q)}{E \vdash h, \texttt{let } x = e_1 \text{ in } e_2 \Downarrow_{max(n,m)+1} (h_2, v, p_1 \smile p_2)} (\text{LET})$$

(4回) (4日) (4日)

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
OPERATIONAL SEMANTICS: LET- AND CALL-RULES

$$\frac{E \vdash h, e_1 \Downarrow_n (h_1, w, p) \quad w \neq \bot \quad E\langle x := w \rangle \vdash h_1, e_2 \Downarrow_m (h_2, v, q)}{E \vdash h, \texttt{let } x = e_1 \text{ in } e_2 \Downarrow_{max(n,m)+1} (h_2, v, p_1 \smile p_2)} \text{ (LET)}$$

$$\frac{E \vdash h, body_f \Downarrow_n (h_1, v, p)}{E \vdash h, \text{call } f \Downarrow_{n+1} (h_1, v, \langle \mathbf{1} \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \rangle \oplus \mathbf{p_1})}$$
(CALL)

▲□ ▶ ▲ □ ▶ ▲ □

VDM-style logic with judgements of the form $\Gamma \triangleright e : A$, meaning *"in context* Γ *expression e fulfills the assertion* A"

Type of assertions (shallow embedding):

$$\mathcal{A} \equiv \mathcal{E}
ightarrow \mathcal{H}
ightarrow \mathcal{V}
ightarrow \mathcal{R}
ightarrow \mathcal{B}$$

No syntactic separation into pre- and postconditions.

Semantic validity $\models e : A$ means "whenever $E \vdash h, e \Downarrow (h', v, p)$ then $A \mathrel{E} h \mathrel{h'} v p$ holds" Note: Covers partial correctness; termination orthogonal. Simplified rule for parameterless function call:

$$\frac{\Gamma, (\text{Call f}: A) \vartriangleright e : A^+}{\Gamma \vartriangleright \text{Call f}: A} \qquad (\text{CALLREC})$$

where ${\tt e}$ is the body of the function ${\tt f}$ and

$$A^+ \equiv \lambda E h h' v p. A(E, h, h', v, p^+)$$

where p^+ is the updated cost component. Note:

- Context Γ: collects hypothetical judgements for recursion
- Meta-logical guarantees: soundness, relative completeness

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
PROGRAM LOGIC RULES

$$\begin{array}{c|c} \Gamma \rhd e_1 : P \quad \Gamma \rhd e_2 : Q \\ \hline \Gamma \rhd \mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 : \lambda \ E \ h \ h' \ v \ p. \ \exists \ p_1 \ p_2 \ h_1 \ w. \quad P \ E \ h \ h_1 \ w \ p_1 \ \land \ w \neq \bot \land \\ Q \ (E\langle x := w \rangle) \ h_1 \ h' \ v \ p_2) \land \\ p = \mathbf{p_1} \smile \mathbf{p_2} \end{array}$$

$$(VLET)$$

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
PROGRAM LOGIC RULES

 $\Gamma \cup \{ (\texttt{call } f, P) \} \rhd \textit{body}_f : \lambda \textit{ E } h \textit{ h' } v \textit{ p. P } \textit{ E } h \textit{ h' } v \textit{ (} \textbf{1 } \textbf{1 } \textbf{0 } \textbf{0}) \oplus \textbf{p}_1,$

 $\Gamma \rhd \texttt{call } f : A$

(VCALL)

-2

< □ > < □ > < □ >

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
SPECIFIC FEATURES OF THE PROGRAM LOGIC

• Unusual rules for **mutually recursive methods** and for **parameter adaptation** in method invocations

$$\frac{(\Gamma, e: A) \ goodContext}{\triangleright e: A} \qquad (MUTREC)$$

$$\frac{(\Gamma, c \diamond m(\overline{a}) : MS \ c \ m \ \overline{a}) \ goodContext}{\rhd c \diamond m(\overline{b}) : MS \ c \ m \ \overline{b}} \quad (ADAPT)$$

- Proof via admissible Cut rule, no extra derivation system
- Global specification table *MS*, *goodContext* relates entries in *MS* to the method bodies

Specification:

$$insSpec \equiv MS \text{ List ins } [a_1, a_2] = \\ \lambda E h h' \vee p . \forall i r n X . \\ (E\langle a_1 \rangle = i \land E\langle a_2 \rangle = \operatorname{Ref} r \land h, r \models_X n \\ \longrightarrow |dom(h)| + 1 = |dom(h')| \land \\ p \leq \ldots)$$

$$sortSpec \equiv MS \text{ List sort } [a] = \\ \lambda E h h' \vee p . \forall i r n X . \\ (E\langle a \rangle = \operatorname{Ref} r \land h, r \models_X n \longrightarrow |dom(h)| = |dom(h')| \land p \leq \ldots)$$

Lemma: $insSpec \land sortSpec \longrightarrow \rhd List \diamond sort([xs]) : MS List sort [xs]$

個 と く ヨ と く ヨ と

Goal: Put termination on top of the core logic without changing it.

Termination for a given state E, h and expression e means that a final state exists in the semantics.

Semantic definition of termination of e under precondition P:

$$\{P\} \in \downarrow \equiv \forall E h . P E h \longrightarrow \exists h' v p . E \vdash h, e \Downarrow (h', v, p)$$

Type of a precondition: $\mathcal{P} \equiv \mathcal{E} \rightarrow \mathcal{H} \rightarrow \mathcal{B}$.

The "rules" of the termination logic are lemmas derived from the Grail Logic.

→ 同 → → 目 → → 目 →

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
SELECTED RULES OF THE TERMINATION LOGIC

$$\frac{\forall E \ h. \ P \ E \ h}{\{P\} \ x.f \ \downarrow} \qquad (GETF)$$

Note that the operational semantics gets stuck in case of a null-reference.

$$\frac{\{P\} \in \downarrow \{P'\} \in P' \downarrow \rhd \in P \longrightarrow_{[x:=]} P'}{\{P\} \operatorname{let} x = e \operatorname{in} e' \downarrow}$$
(LET)

We use the following combinators to capture bindings in lets and express the side condition in terms of a VDM assertion:

$$P \longrightarrow_{\lfloor x := \rfloor} Q \equiv \lambda E h h' v p. P E h \longrightarrow \exists r. v = r \land Q E \lfloor x := r \rfloor h'$$

Same approach as for mutual recursion in partial correctness logic: extend judgements to work over sets of expression and preconditions.

Definition of **goodContexT** over a context *G*:

With this predicate we can prove the following mutual recursion lemma:

$$\frac{\text{finite } G \quad \text{goodContexT } G \quad (\text{call } f, P) \in G}{\{\lambda E \ h. \ \exists n. \ P \ n \ E \ h\} \text{ call } f \ \downarrow} \quad (\text{MUTREC})$$

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
DISCUSSION OF THE PROGRAM LOGIC

- Expressive logic for correctness and resource consumption
- Logic proven sound and complete
- Termination built on top of a logic for partial correctness
- Less suited for immediate program verification: not fully automatic (case-splits, ∃-instantiations,...), verification conditions large and complex
- Continue abstraction: loop unfolding in op. semantics → invariants in general program logics → specific logic for interesting (resource-)properties
- Aim: exploit structure of Camelot compilation (freelist) and program analysis

List.ins :
$$1, IL(0) \rightarrow L(0), 0$$

List.sort : $0, L(0) \rightarrow L(0), 0$

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary HEAP SPACE LOGIC (LFD-ASSERTIONS)

- Translation of Hofmann-Jost type system to Grail, types interpreted as relating initial to final freelist
- Fixed assertion format $\llbracket U, n, [\Delta] \triangleright T, m \rrbracket$

List.ins : $\llbracket \{a, l\}, 1, [a \mapsto l, l \mapsto L(0)] \triangleright L(0), 0 \rrbracket$ List.sort : $\llbracket \{l\}, 0, [l \mapsto L(0)] \triangleright L(0), 0 \rrbracket$

- LFD types express space requirements for datatype constructors, numbers *n*, *m* refer to the freelist length
- Semantic definition by expansion into core bytecode logic, derived proof rules using linear affine context management
- Dramatic reduction of VC complexity!

▲御▶ ▲注▶ ▲注▶

$$\begin{split} & [U, n, [\Delta] \blacktriangleright T, m] \equiv \\ & \lambda \ E \ h \ h' \ v \ p. \\ & \forall \ F \ N. \quad (regionsExist(U, \Delta, h, E) \land regionsDistinct(U, \Delta, h, E) \land \\ & freelist(h, F, N) \land distinctFrom(U, \Delta, h, E, F)) \\ & \longrightarrow \\ & (\exists \ R \ S \ M \ G. \ v, h' \models_T R, S \land freelist(h', G, M) \land R \cap G = \emptyset \land \\ & Bounded((R \cup G), F, U, \Delta, h, E) \land modified(F, U, \Delta, h, E, \\ & sizeRestricted(n, N, m, S, M, U, \Delta, h, E) \land dom h = dom h') \end{split}$$

• Formulae defined by BC expansion:

 $\begin{array}{l} \text{regionsDistinct}(U, \Delta, h, E) \equiv \\ \forall x y R_x R_y S_x S_y. \\ (\{x, y\} \subseteq U \cap \text{dom} \Delta \land x \neq y \land E\langle x \rangle, h \models_{\Delta(x)} R_x, S_x \land E\langle y \rangle, h \models_{\Delta(y)} R_y, S_y) \\ \longrightarrow R_x \cap R_y = \emptyset \\ \text{sizeRestricted}(n, N, m, S, M, U, \Delta, h, E) \equiv \\ \forall q C. Size(E, h, U, A, C) \land n + C + q \leq N \longrightarrow m + S + q \leq M \end{array}$

• You don't want to read this — and you don't need to!

・ 同 ト ・ ヨ ト ・ ヨ ト

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
PROOF SYSTEM

Proof system with linear inequalities and linear affine type system (U, Δ) that guarantees benign sharing;

$$\frac{\Delta(x) = T \quad n \le m}{\Gamma \rhd \operatorname{var} x : \llbracket \{x\}, m, [\Delta] \blacktriangleright T, n \rrbracket}$$
(VAR)

$$\begin{split} & \Gamma \rhd e_1 : \llbracket U_1, n, [\Delta] \blacktriangleright T_1, m \rrbracket \qquad \Gamma \rhd e_2 : \llbracket U_2, m, [\Delta, x \mapsto T_1] \blacktriangleright T_2, k \rrbracket \\ & \underbrace{U_1 \cap (U_2 \setminus \{x\}) = \emptyset \qquad \qquad T_1 = \mathbf{L}(_)}_{\Gamma \rhd \text{ let } x = e_1 \text{ in } e_2 : \llbracket U_1 \cup (U_2 \setminus \{x\}), n, [\Delta] \blacktriangleright T_2, k \rrbracket } \\ & (\text{LET}) \end{split}$$

- UFD assertions practically useful and conceptually appealing
- Exploit program structure and compiler analysis: most effort done once (in soundness proofs), application straight-forward
- "Classic PCC": independence of derived logic from Isabelle (no higher-order predicates, certifying constraint logic programming)
- "Foundational PCC": can unfold back to core logic and operational semantics if desired
- Generalisation to all Camelot datatypes needed
- Soundness proofs non-trivial, and challenging to generalise to more liberal sharing disciplines

(4回) (1日) (日)

Goal: Automatically generate proofs from high-level types and inferred heap consumption.

Approach: Use inferred space bounds as invariants. Use powerful Isabelle tactics to automatically prove a statement on heap consumption in the heap logic.

Example certificate (for list append):

$$\label{eq:rescaled} \begin{split} \Gamma \vartriangleright \mathsf{snd} \ (\mathsf{methtable} \ \mathsf{Append} \ \mathsf{append}) \ : \ \mathsf{SPEC} \ \mathsf{append} \\ \mathsf{by} \ (\mathsf{Wp} \ \mathsf{append} _\mathsf{pdefs}) \end{split}$$

ightarrow Append.append([RNarg x0, RNarg x1]) : sMST Append append [RNarg x0, RNarg by (fastsimp intro: Context_good GCInvs simp: ctxt_def)

(本間) (本語) (本語)

MRG works towards resource-safe global computing:

- check resource consumption before executing downloaded code;
- automatically generate certificate out of a Camelot type.
- Components of the picture
 - Proof-Carrying-Code infrastructure
 - Inference for space consumption in Camelot
 - Specialised derived assertions on top of a general program logic for Grail
 - Certificate = proof of a derived assertion
 - Certificate generation from high-level types

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary
FURTHER READING

- David Aspinall, Stephen Gilmore, Martin Hofmann, Donald Sannella and Ian Stark, *Mobile Resource Guarantees for Smart Devices* in CASSIS04 — Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, LNCS 3362, 2005. http://groups.inf.ed.ac.uk/mrg/publications/mrg/cassis2004.pd
- David Aspinall and Lennart Beringer and Martin Hofmann and Hans-Wolfgang Loidl and Alberto Momigliano, A Program Logic for Resource Verification, in TPHOLs2004 — International Conference on Theorem Proving in Higher Order Logics, Utah, LNCS 3223, 2004.
- Martin Hofmann, Steffen Jost, Static Prediction of Heap Space Usage for First-Order Functional Programs, in POPL'03
 — Symposium on Principles of Programming Languages, New Orleans, LA, USA, Jan 2003.

- K. Crary and S. Weirich, *Resource Bound Certification* in POPL'00 — Symposium on Principles of Programming Languages, Boston, USA, 2000. http://www-2.cs.cmu.edu/ crary/papers/1999/res/res.ps.gz
- Gilles Barthe, Mariela Pavlova, Gerardo Schneider, Precise analysis of memory consumption using program logics in GMG05,
 - http://www-sop.inria.fr/everest/soft/Jack/doc/papers/gmg05.p