
PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Proof-Carrying-Code
Applying formal methods in a distributed world

Hans-Wolfgang Loidl

LFE Theoretische Informatik, Institut für Informatik,
Ludwig-Maximilians Universität, München

July 1, 2005

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

1 PCC for Resources

2 Camelot: Our High-level Language

3 Space Inference

4 Grail: Our intermediate language

5 A Program Logic for Grail

6 Heap Space Logic

7 Summary

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivation

Resource-bounded computation is one specific instance of PCC.

Safety policy: resource consumption is lower than a given bound.

Resources can be (heap) space, time, or size of parameters to
system calls.

Strong demand for such guarantees for example in embedded
systems.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Mobile Resource Guarantees

Objective:
Development of an infrastructure to endow mobile code with
independently verifiable certificates describing resource behaviour.
Approach:
Proof-carrying code for resource-related properties, where
proofs are generated from typing derivations in a resource-aware
type system.

Project partners: LFCS, Univ of Edinburgh (D. Sannella) and Inst Informatik,

LMU Univ, Munich (M. Hofmann). This work is funded by the EU under the

IST-FET project Mobile Resource Guarantees No. IST-2001-33149.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivation

Restrict the execution of mobile code to those adhering to a
certain resource policy.

Application Scenarios:

A user of a handheld device might want to know that a
downloaded application will definitely run within the limited
amount of memory available.

A provider of computational power in a Grid
infrastructure may only be willing to offer this service upon
receiving dependable guarantees about the required resource
consumption.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Proof-Carrying-Code with High-Level-Logics

Our approach to PCC: Combine high-level type-systems with
program logics and build a hierarchy of logics to construct a logic
tailored to reason about resources.

Everything is formalised in a theorem prover.

Classic vs Foundational PCC: best of both worlds

Simple reasoning, using specialised logics;

Strong foundations, by encoding the logics in a theorem
prover

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Proof-Carrying-Code with High-Level-Logics

Specialised Logic

Termination Logic

Program Logic

Operational Semantics E ` h, e ⇓ (h′, v , p)

Γ B e : A

`T {P} e ↓
B ptq : D(G , τ)

High-Level Type System G `H t : τ

��

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

Instead, define a higher-level logic `H that abstracts over the
details of datatype representation, and that has the property

G `H t : τ =⇒ Bptq : D(Γ, τ)

We specialise the form of assertions like this

D({x : list, y : list}, list) ≡
λE h h′ v p. h |=list E 〈x〉 ∧ h |=list E 〈y〉 −→

h′ |=list E 〈x〉 ∧ h′ |=list E 〈y〉 ∧ h′ |=list v

Now we can formulate rules, that match translations from the
high-level language:

Bpt1q : D(Γ, τ list) B pt2q : D(Γ, τ)

Bpcons(t1, t2)q : D(Γ, τ list)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

Instead, define a higher-level logic `H that abstracts over the
details of datatype representation, and that has the property

G `H t : τ =⇒ Bptq : D(Γ, τ)

We specialise the form of assertions like this

D({x : list, y : list}, list) ≡
λE h h′ v p. h |=list E 〈x〉 ∧ h |=list E 〈y〉 −→

h′ |=list E 〈x〉 ∧ h′ |=list E 〈y〉 ∧ h′ |=list v

Now we can formulate rules, that match translations from the
high-level language:

Bpt1q : D(Γ, τ list) B pt2q : D(Γ, τ)

Bpcons(t1, t2)q : D(Γ, τ list)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

Instead, define a higher-level logic `H that abstracts over the
details of datatype representation, and that has the property

G `H t : τ =⇒ Bptq : D(Γ, τ)

We specialise the form of assertions like this

D({x : list, y : list}, list) ≡
λE h h′ v p. h |=list E 〈x〉 ∧ h |=list E 〈y〉 −→

h′ |=list E 〈x〉 ∧ h′ |=list E 〈y〉 ∧ h′ |=list v

Now we can formulate rules, that match translations from the
high-level language:

Bpt1q : D(Γ, τ list) B pt2q : D(Γ, τ)

Bpcons(t1, t2)q : D(Γ, τ list)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Camelot

Strict, first-order functional language with CAML-like syntax
and object-oriented extensions

Compiled to subset of JVM (Java Virtual Machine) bytecode
(Grail)

Memory model: 2 level heap

Security: Static analyses to prevent deallocation of live cells in
Level-1 Heap: linear typing (folklore + Hofmann), readonly
typing (Aspinall, Hofmann, Konencny), layered sharing
analysis (Konencny).

Resource bounds: Static analysis to infer linear upper bounds
on heap consumption (Hofmann, Jost).

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Example: Insertion Sort

Camelot program:

let ins a l = match l with
Nil -> Cons(a,Nil)

| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with Nil -> Nil
| Cons(a,t)@_ -> ins a (sort t)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

In-place Operations via a Diamond Type

Using operators, such as Cons, amounts to heap allocation.

Additionally, Camelot provides extensions to do in-place
operations over arbitrary data structures via a so called diamond
type � with d ∈ �:

match l with Nil@d => e1

| Cons (h,t)@d => ... Cons (x,t)@d ...

The memory occupied by the cons cell can be re-used via the
diamond d.
Note:

� is an abstract data-type

structured use of diamonds in branches of pattern matches

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

How does this fit with referential

transparency?

Using a diamond type, we can introduce side effects:

type ilist = Nil | Cons of int*ilist
let insert1 x l =

match l with Nil -> Cons (x, l)
| Cons(h,t)@d ->

if x <= h then Cons(x, Cons(h,t)@d)
else Cons(h, insert1 x t)@d

let sort l = match l with Nil -> Nil
| Cons(h,t) -> insert1 h (sort t)

Now, what’s the result of

let start args = let l = [4,5,6,7] in
let l1 = insert1 6 l in
print_list l

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

How does this fit with referential

transparency?

Using a diamond type, we can introduce side effects:

type ilist = Nil | Cons of int*ilist
let insert1 x l =

match l with Nil -> Cons (x, l)
| Cons(h,t)@d ->

if x <= h then Cons(x, Cons(h,t)@d)
else Cons(h, insert1 x t)@d

let sort l = match l with Nil -> Nil
| Cons(h,t) -> insert1 h (sort t)

Now, what’s the result of

let start args = let l = [4,5,6,7] in
let l1 = insert1 6 l in
print_list l

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Linearity saves the day

We can characterise the class of programs for which referential
transparency is retained.

Theorem

A linearly typed Camelot program computes the function
specified by its purely functional semantics (Hofmann, 2000).

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Beyond Linearity

But: linearity is too restrictive in many cases; we also want to use
diamonds in programs where only the last access to the data
structure is destructive.

More expressive type systems to express such access patterns are
readonly types (Aspinall, Hofmann, Konecny, 2001) and types
with layered sharing (Konecny 2003).

As with pointers, diamonds can be a powerful gun to shoot
yourself in the foot. We need a powerful type system to prevent
this, and want a static analysis to predict resource consumption.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Beyond Linearity

But: linearity is too restrictive in many cases; we also want to use
diamonds in programs where only the last access to the data
structure is destructive.

More expressive type systems to express such access patterns are
readonly types (Aspinall, Hofmann, Konecny, 2001) and types
with layered sharing (Konecny 2003).

As with pointers, diamonds can be a powerful gun to shoot
yourself in the foot. We need a powerful type system to prevent
this, and want a static analysis to predict resource consumption.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Beyond Linearity

But: linearity is too restrictive in many cases; we also want to use
diamonds in programs where only the last access to the data
structure is destructive.

More expressive type systems to express such access patterns are
readonly types (Aspinall, Hofmann, Konecny, 2001) and types
with layered sharing (Konecny 2003).

As with pointers, diamonds can be a powerful gun to shoot
yourself in the foot. We need a powerful type system to prevent
this, and want a static analysis to predict resource consumption.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Space Inference

Goal: Infer a linear upper bound on heap consumption.

Given Camelot program containing a function

start : string list -> unit

find linear function s such that start(l) will not call new() (only
make()) when evaluated in a heap h where

the freelist has length not less than s(n)

l points in h to a linear list of some length n

the freelist which forms a part of h is well-formed

the freelist does not overlap with l

Composing start with runtime environment that binds input to,
e.g., stdin yields a standalone program that runs within
predictable heap space.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Extended (LFD) Types

Idea: Weights are attached to constructors in an extended
type-system.

ins : 1, int -> list(...<0>) -> list(...<0>), 0

says that the call ins x xs requires 1 heap-cell plus 0 heap cells
for each Cons cell of the list xs.

sort : 0, list(...<0>) -> list(...<0>), 0

sort does not consume any heap space.

start : 0, list(...<1>) -> unit, 0;

gives rise to the desired linear bounding function s(n) = n.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

High-level Type System: Function Call

A,B,C are types, k, k ′, n, n′ ∈ Q+, f is a Camelot function and
x1, . . . , xp are variables, Σ is a table mapping function names to
types.

Σ(f) = (A1, . . . ,Ap, k) −→ (C , k ′)
n ≥ k n − k + k ′ ≥ n′

Γ, x1 : A1, . . . , xp : Ap, n ` f(x1, . . . , xp) : C , n′ (Fun)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Grail

Characteristics of Grail (Guaranteed Resource Aware Intermediate
Language):

Abstract representation of virtual machine languages

Language of dual identity: (impure) functional semantics and
(object-oriented) imperative semantics via expansion to virtual
machine code

Syntactic restrictions on functions to obtain coincidence of
semantics: no nesting; only tail-calls; λ-lifted; arguments and
parameters must match

Operational semantics with cost model E ` h, e ⇓ (h′, v , p)
relating expression e, environment E , (pre-)heap h, result v ,
(post-)heap h′ and cost component

p = 〈clock callc invkc invkdpth〉.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Example: Insertion sort

Grail code:

method static public List ins (int a, List l) = ...Make(..,..,..)...
method static public List sort (List l) =
let fun f(List l) =

if l = null then null
else let val h = l.HD

val t = l.TL
val () = D.free (l)
val l = List.sort (t)

in List.ins (h, l) end
in f(l) end

This is a 1-to-1 translation of JVM code

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Grail: Syntax

e ∈ expr ::= null | int i | var x | prim p x x | new c [t1 := x1, . . . , tn := xn] |
x .t | x .t:=x | c � t | c � t:=x | let x = e in e | e ; e |
if x then e else e | call f | x ·m(a) | c �m(a)

a ∈ args ::= var x | null | i

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Grail: Semantic Domains

Locations l ∈ Loc ≡ nat
References r ∈ Ref ::= null |ref Loc
Values v ∈ Val ≡ int ∪ Ref ∪ {⊥}
Environments η ∈ Env ≡ (iname ⇀ int)] (rname ⇀ Ref)
Heaps h ∈ Heap ≡ (Loc ⇀ cname)

(ifldname → Loc → int)(rfldname → Loc → Ref)
Resource record p ∈ RRec ≡ nat× nat× nat× nat

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Grail: Modelling resources

Resources are an extra component in operational and axiomatic
semantics (“resource record”).

p ∈ RRec = Lclock : nat, callcount : nat, invokedepth : nat, maxstack : natM

We use the following shorthand notation: 〈1 0 0 0〉
Operations on resource vectors are ⊕, as component-wise addition,
and ^:

(c, cc, id , ms) ^ (c ′, cc ′, id ′, ms ′) = (c + c ′, cc + cc ′, id + id ′, max(ms, ms ′))

Resource vectors can be generalised to abstract operations
resource algebras.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Grail: Modelling resources

Resources are an extra component in operational and axiomatic
semantics (“resource record”).

p ∈ RRec = Lclock : nat, callcount : nat, invokedepth : nat, maxstack : natM

We use the following shorthand notation: 〈1 0 0 0〉
Operations on resource vectors are ⊕, as component-wise addition,
and ^:

(c, cc, id , ms) ^ (c ′, cc ′, id ′, ms ′) = (c + c ′, cc + cc ′, id + id ′, max(ms, ms ′))

Resource vectors can be generalised to abstract operations
resource algebras.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Grail: Modelling resources

Resources are an extra component in operational and axiomatic
semantics (“resource record”).

p ∈ RRec = Lclock : nat, callcount : nat, invokedepth : nat, maxstack : natM

We use the following shorthand notation: 〈1 0 0 0〉
Operations on resource vectors are ⊕, as component-wise addition,
and ^:

(c, cc, id , ms) ^ (c ′, cc ′, id ′, ms ′) = (c + c ′, cc + cc ′, id + id ′, max(ms, ms ′))

Resource vectors can be generalised to abstract operations
resource algebras.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Judgement of the Operational Semantics

Two semantics for Grail:

imperative: small-step call-by-value semantics, using a big
state structure;

functional: big-step call-by-value semantics, with
side-effecting operations;

A judgement in the functional operational semantics

E ` h, e ⇓n (h′, v , p)

is to be read as “starting with a heap h and a variable enviroment
E , the Grail code e evaluates in n steps to the value v , yielding the
heap h′ as result and consuming p resources.”

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Operational Semantics: Let- and Call-rules

E ` h, e1 ⇓n (h1, w , p) w 6= ⊥ E〈x := w〉 ` h1, e2 ⇓m (h2, v , q)

E ` h, let x = e1 in e2 ⇓max(n,m)+1 (h2, v , p1 ^ p2)
(let)

E ` h, bodyf ⇓n (h1, v , p)

E ` h, call f ⇓n+1 (h1, v , 〈1 1 0 0〉 ⊕ p1)
(call)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Operational Semantics: Let- and Call-rules

E ` h, e1 ⇓n (h1, w , p) w 6= ⊥ E〈x := w〉 ` h1, e2 ⇓m (h2, v , q)

E ` h, let x = e1 in e2 ⇓max(n,m)+1 (h2, v , p1 ^ p2)
(let)

E ` h, bodyf ⇓n (h1, v , p)

E ` h, call f ⇓n+1 (h1, v , 〈1 1 0 0〉 ⊕ p1)
(call)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

A Program Logic for Grail

VDM-style logic with judgements of the form Γ B e : A, meaning

“in context Γ expression e fulfills the assertion A”

Type of assertions (shallow embedding):

A ≡ E → H → H → V → R→ B

No syntactic separation into pre- and postconditions.

Semantic validity |= e : A means

“whenever E ` h, e ⇓ (h′, v , p) then A E h h′ v p holds”

Note: Covers partial correctness; termination orthogonal.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

A Program Logic for Grail

Simplified rule for parameterless function call:

Γ, (Call f : A) B e : A+

Γ B Call f : A
(CallRec)

where e is the body of the function f and

A+ ≡ λ E h h′ v p.A(E , h, h′, v , p+)

where p+ is the updated cost component.
Note:

Context Γ: collects hypothetical judgements for recursion

Meta-logical guarantees: soundness, relative completeness

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Program Logic Rules

Γ B e1 : P Γ B e2 : Q

Γ B let x = e1 in e2 : λ E h h′ v p.∃ p1 p2 h1 w . P E h h1 w p1 ∧ w 6= ⊥ ∧
Q (E〈x := w〉) h1 h′ v p2) ∧
p = p1 ^ p2

(vlet)

Γ ∪ {(call f , P)}B bodyf : λ E h h′ v p. P E h h′ v 〈1 1 0 0〉 ⊕ p1,

Γ B call f : A
(vcall)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Program Logic Rules

Γ B e1 : P Γ B e2 : Q

Γ B let x = e1 in e2 : λ E h h′ v p.∃ p1 p2 h1 w . P E h h1 w p1 ∧ w 6= ⊥ ∧
Q (E〈x := w〉) h1 h′ v p2) ∧
p = p1 ^ p2

(vlet)

Γ ∪ {(call f , P)}B bodyf : λ E h h′ v p. P E h h′ v 〈1 1 0 0〉 ⊕ p1,

Γ B call f : A
(vcall)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Specific Features of the Program Logic

Unusual rules for mutually recursive methods and for
parameter adaptation in method invocations

(Γ, e : A) goodContext

B e : A
(Mutrec)

(Γ, c �m(a) : MS c m a) goodContext

Bc �m(b) : MS c m b
(Adapt)

Proof via admissible Cut rule, no extra derivation system

Global specification table MS, goodContext relates entries in
MS to the method bodies

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Example: Insertion sort

Specification:

insSpec ≡ MS List ins [a1, a2] =

λ E h h′ v p .∀ i r n X .

(E〈a1〉 = i ∧ E〈a2〉 = Ref r ∧ h, r |=X n
−→ |dom (h)|+ 1 = |dom (h′)| ∧

p ≤ . . .)

sortSpec ≡ MS List sort [a] =

λ E h h′ v p .∀ i r n X .

(E〈a〉 = Ref r ∧ h, r |=X n −→ |dom (h)| = |dom (h′)| ∧ p ≤ . . .)

Lemma:
insSpec ∧ sortSpec −→ B List � sort([xs]) : MS List sort [xs]

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Definition of Termination

Goal: Put termination on top of the core logic without changing it.

Termination for a given state E , h and expression e means that a
final state exists in the semantics.

Semantic definition of termination of e under precondition P:

{P} e ↓ ≡ ∀ E h . P E h −→ ∃ h′ v p . E ` h, e ⇓ (h′, v , p)

Type of a precondition: P ≡ E → H → B.

The “rules” of the termination logic are lemmas derived from the
Grail Logic.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Selected Rules of the Termination Logic

∀E h. P E h −→ Ebxc 6= null

{P} x .f ↓
(Getf)

Note that the operational semantics gets stuck in case of a
null-reference.

{P} e ↓ {P ′} e′ ↓ B e : P −→bx :=c P ′

{P} let x = e in e′ ↓
(Let)

We use the following combinators to capture bindings in lets and
express the side condition in terms of a VDM assertion:

P −→bx :=c Q ≡ λ E h h′ v p. P E h −→ ∃r . v = r ∧ Q Ebx := rc h′

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Mutual Recursion

Same approach as for mutual recursion in partial correctness logic:
extend judgements to work over sets of expression and
preconditions.

Definition of goodContexT over a context G :

goodContexT G ≡ ∀(call f , P) ∈ G . ∀n.
(∀(call f ′, P ′) ∈ G .
∀m < n. {P ′ m} call f ′ ↓) −→ {P n} body f ↓

With this predicate we can prove the following mutual recursion
lemma:

finite G goodContexT G (call f , P) ∈ G

{λE h. ∃n. P n E h} call f ↓
(MUTREC)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Discussion of the Program Logic

Expressive logic for correctness and resource consumption

Logic proven sound and complete

Termination built on top of a logic for partial correctness

Less suited for immediate program verification: not fully
automatic (case-splits, ∃-instantiations,. . .), verification
conditions large and complex

Continue abstraction: loop unfolding in op. semantics →
invariants in general program logics → specific logic for
interesting (resource-)properties

Aim: exploit structure of Camelot compilation (freelist) and
program analysis

List.ins : 1, IL(0) → L(0), 0

List.sort : 0,L(0) → L(0), 0

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Heap Space Logic (LFD-assertions)

Translation of Hofmann-Jost type system to Grail, types
interpreted as relating initial to final freelist

Fixed assertion format JU, n, [∆] I T ,mK

List.ins : J{a, l}, 1, [a 7→ I, l 7→ L(0)] I L(0), 0K
List.sort : J{l}, 0, [l 7→ L(0)] I L(0), 0K

LFD types express space requirements for datatype
constructors, numbers n, m refer to the freelist length

Semantic definition by expansion into core bytecode logic,
derived proof rules using linear affine context management

Dramatic reduction of VC complexity!

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Semantic interpretation of JU , n, [∆] I T , mK

JU, n, [∆] I T , mK ≡
λ E h h′ v p.
∀ F N. (regionsExist(U, ∆, h, E) ∧ regionsDistinct(U, ∆, h, E) ∧

freelist(h, F , N) ∧ distinctFrom(U, ∆, h, E , F))
−→
(∃ R S M G . v , h′ |=T R, S ∧ freelist(h′, G , M) ∧ R ∩ G = ∅ ∧

Bounded((R ∪ G), F , U, ∆, h, E) ∧modified(F , U, ∆, h, E , h′) ∧
sizeRestricted(n, N, m, S , M, U, ∆, h, E) ∧ dom h = dom h′)

• Formulae defined by BC expansion:

regionsDistinct(U, ∆, h, E) ≡
∀ x y Rx Ry Sx Sy .

({x, y} ⊆ U ∩ dom ∆ ∧ x 6= y ∧ E〈x〉, h |=∆(x) Rx , Sx ∧ E〈y〉, h |=∆(y) Ry , Sy)

−→ Rx ∩ Ry = ∅
sizeRestricted(n, N, m, S, M, U, ∆, h, E) ≡
∀ q C . Size(E , h, U, ∆, C) ∧ n + C + q ≤ N −→ m + S + q ≤ M

• You don’t want to read this — and you don’t need to!

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Proof System

Proof system with linear inequalities and linear affine type system
(U,∆) that guarantees benign sharing;

∆(x) = T n ≤ m

Γ B var x : J{x}, m, [∆] I T , nK
(Var)

Γ B e1 : JU1, n, [∆] I T1, mK Γ B e2 : JU2, m, [∆, x 7→ T1] I T2, kK
U1 ∩ (U2 \ {x}) = ∅ T1 = L()

Γ B let x = e1 in e2 : JU1 ∪ (U2 \ {x}), n, [∆] I T2, kK
(Let)

∆(x) = L(k) l = n + k Γ B e : JU, l , [∆, t 7→ L(k)] I T , mK x /∈ U \ {t}
Γ B let t = x .TL in e : J(U \ {t}) ∪ {x}, n, [∆] I T , mK

(LetTL)

Note: Linearity relaxed in rules for compiled match-expressions

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Discussion of the Heap Space Logic

©..̂ LFD assertions practically useful and conceptually appealing

©..̂ Exploit program structure and compiler analysis: most effort
done once (in soundness proofs), application straight-forward

©..̂ “Classic PCC”: independence of derived logic from Isabelle
(no higher-order predicates, certifying constraint logic
programming)

©..̂ “Foundational PCC”: can unfold back to core logic and
operational semantics if desired

©.._ Generalisation to all Camelot datatypes needed

©.._ Soundness proofs non-trivial, and challenging to generalise to
more liberal sharing disciplines

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Certificate Generation

Goal: Automatically generate proofs from high-level types and
inferred heap consumption.

Approach: Use inferred space bounds as invariants. Use powerful
Isabelle tactics to automatically prove a statement on heap
consumption in the heap logic.

Example certificate (for list append):

Γ B snd (methtable Append append) : SPEC append
by (Wp append pdefs)

BAppend.append([RNarg x0, RNarg x1]) : sMST Append append [RNarg x0, RNarg x1]
by (fastsimp intro: Context good GCInvs simp: ctxt def)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Summary

MRG works towards resource-safe global computing:

check resource consumption before executing downloaded
code;

automatically generate certificate out of a Camelot type.

Components of the picture

Proof-Carrying-Code infrastructure

Inference for space consumption in Camelot

Specialised derived assertions on top of a general program
logic for Grail

Certificate = proof of a derived assertion

Certificate generation from high-level types

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Further Reading

David Aspinall, Stephen Gilmore, Martin Hofmann, Donald
Sannella and Ian Stark, Mobile Resource Guarantees for Smart
Devices in CASSIS04 — Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices, LNCS 3362, 2005.
http://groups.inf.ed.ac.uk/mrg/publications/mrg/cassis2004.pdf

David Aspinall and Lennart Beringer and Martin Hofmann and
Hans-Wolfgang Loidl and Alberto Momigliano, A Program
Logic for Resource Verification, in TPHOLs2004 —
International Conference on Theorem Proving in Higher Order
Logics, Utah, LNCS 3223, 2004.

Martin Hofmann, Steffen Jost, Static Prediction of Heap
Space Usage for First-Order Functional Programs, in POPL’03
— Symposium on Principles of Programming Languages, New
Orleans, LA, USA, Jan 2003.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Further Reading

K. Crary and S. Weirich, Resource Bound Certification in
POPL’00 — Symposium on Principles of Programming
Languages, Boston, USA, 2000.
http://www-2.cs.cmu.edu/ crary/papers/1999/res/res.ps.gz

Gilles Barthe, Mariela Pavlova, Gerardo Schneider, Precise
analysis of memory consumption using program logics in
GMG05,
http://www-sop.inria.fr/everest/soft/Jack/doc/papers/gmg05.pdf

Hans-Wolfgang Loidl Proof-Carrying-Code

	PCC for Resources
	Camelot: Our High-level Language
	Space Inference
	Grail: Our intermediate language
	A Program Logic for Grail
	Heap Space Logic
	Summary

