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Motivation

Resource-bounded computation is one specific instance of PCC.

Safety policy: resource consumption is lower than a given bound.

Resources can be (heap) space, time, or size of parameters to
system calls.

Strong demand for such guarantees for example in embedded
systems.
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Mobile Resource Guarantees

Objective:
Development of an infrastructure to endow mobile code with
independently verifiable certificates describing resource behaviour.
Approach:
Proof-carrying code for resource-related properties, where
proofs are generated from typing derivations in a resource-aware
type system.

Project partners: LFCS, Univ of Edinburgh (D. Sannella) and Inst Informatik,

LMU Univ, Munich (M. Hofmann). This work is funded by the EU under the

IST-FET project Mobile Resource Guarantees No. IST-2001-33149.
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Motivation

Restrict the execution of mobile code to those adhering to a
certain resource policy.

Application Scenarios:

A user of a handheld device might want to know that a
downloaded application will definitely run within the limited
amount of memory available.

A provider of computational power in a Grid
infrastructure may only be willing to offer this service upon
receiving dependable guarantees about the required resource
consumption.
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Proof-Carrying-Code with High-Level-Logics

Our approach to PCC: Combine high-level type-systems with
program logics and build a hierarchy of logics to construct a logic
tailored to reason about resources.

Everything is formalised in a theorem prover.

Classic vs Foundational PCC: best of both worlds

Simple reasoning, using specialised logics;

Strong foundations, by encoding the logics in a theorem
prover

Hans-Wolfgang Loidl Proof-Carrying-Code



PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Proof-Carrying-Code with High-Level-Logics

Specialised Logic

Termination Logic

Program Logic

Operational Semantics E ` h, e ⇓ (h′, v , p)

Γ B e : A

`T {P} e ↓
B ptq : D(G , τ)

High-Level Type System G `H t : τ

��

Hans-Wolfgang Loidl Proof-Carrying-Code



PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code
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Motivating Example of this Hierarchical

Approach

Instead, define a higher-level logic `H that abstracts over the
details of datatype representation, and that has the property

G `H t : τ =⇒ Bptq : D(Γ, τ)

We specialise the form of assertions like this

D({x : list, y : list}, list) ≡
λE h h′ v p. h |=list E 〈x〉 ∧ h |=list E 〈y〉 −→

h′ |=list E 〈x〉 ∧ h′ |=list E 〈y〉 ∧ h′ |=list v

Now we can formulate rules, that match translations from the
high-level language:

Bpt1q : D(Γ, τ list) B pt2q : D(Γ, τ)

Bpcons(t1, t2)q : D(Γ, τ list)

Hans-Wolfgang Loidl Proof-Carrying-Code



PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

Instead, define a higher-level logic `H that abstracts over the
details of datatype representation, and that has the property

G `H t : τ =⇒ Bptq : D(Γ, τ)

We specialise the form of assertions like this

D({x : list, y : list}, list) ≡
λE h h′ v p. h |=list E 〈x〉 ∧ h |=list E 〈y〉 −→

h′ |=list E 〈x〉 ∧ h′ |=list E 〈y〉 ∧ h′ |=list v

Now we can formulate rules, that match translations from the
high-level language:

Bpt1q : D(Γ, τ list) B pt2q : D(Γ, τ)

Bpcons(t1, t2)q : D(Γ, τ list)

Hans-Wolfgang Loidl Proof-Carrying-Code



PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Motivating Example of this Hierarchical

Approach

Instead, define a higher-level logic `H that abstracts over the
details of datatype representation, and that has the property

G `H t : τ =⇒ Bptq : D(Γ, τ)

We specialise the form of assertions like this

D({x : list, y : list}, list) ≡
λE h h′ v p. h |=list E 〈x〉 ∧ h |=list E 〈y〉 −→

h′ |=list E 〈x〉 ∧ h′ |=list E 〈y〉 ∧ h′ |=list v

Now we can formulate rules, that match translations from the
high-level language:

Bpt1q : D(Γ, τ list) B pt2q : D(Γ, τ)

Bpcons(t1, t2)q : D(Γ, τ list)

Hans-Wolfgang Loidl Proof-Carrying-Code



PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Summary

Camelot

Strict, first-order functional language with CAML-like syntax
and object-oriented extensions

Compiled to subset of JVM (Java Virtual Machine) bytecode
(Grail)

Memory model: 2 level heap

Security: Static analyses to prevent deallocation of live cells in
Level-1 Heap: linear typing (folklore + Hofmann), readonly
typing (Aspinall, Hofmann, Konencny), layered sharing
analysis (Konencny).

Resource bounds: Static analysis to infer linear upper bounds
on heap consumption (Hofmann, Jost).
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Example: Insertion Sort

Camelot program:

let ins a l = match l with
Nil -> Cons(a,Nil)

| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with Nil -> Nil
| Cons(a,t)@_ -> ins a (sort t)
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In-place Operations via a Diamond Type

Using operators, such as Cons, amounts to heap allocation.

Additionally, Camelot provides extensions to do in-place
operations over arbitrary data structures via a so called diamond
type � with d ∈ �:

match l with Nil@d => e1

| Cons (h,t)@d => ... Cons (x,t)@d ...

The memory occupied by the cons cell can be re-used via the
diamond d.
Note:

� is an abstract data-type

structured use of diamonds in branches of pattern matches

Hans-Wolfgang Loidl Proof-Carrying-Code
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How does this fit with referential

transparency?

Using a diamond type, we can introduce side effects:

type ilist = Nil | Cons of int*ilist
let insert1 x l =

match l with Nil -> Cons (x, l)
| Cons(h,t)@d ->

if x <= h then Cons(x, Cons(h,t)@d)
else Cons(h, insert1 x t)@d

let sort l = match l with Nil -> Nil
| Cons(h,t) -> insert1 h (sort t)

Now, what’s the result of

let start args = let l = [4,5,6,7] in
let l1 = insert1 6 l in
print_list l

Hans-Wolfgang Loidl Proof-Carrying-Code
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Linearity saves the day

We can characterise the class of programs for which referential
transparency is retained.

Theorem

A linearly typed Camelot program computes the function
specified by its purely functional semantics (Hofmann, 2000).

Hans-Wolfgang Loidl Proof-Carrying-Code
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Beyond Linearity

But: linearity is too restrictive in many cases; we also want to use
diamonds in programs where only the last access to the data
structure is destructive.

More expressive type systems to express such access patterns are
readonly types (Aspinall, Hofmann, Konecny, 2001) and types
with layered sharing (Konecny 2003).

As with pointers, diamonds can be a powerful gun to shoot
yourself in the foot. We need a powerful type system to prevent
this, and want a static analysis to predict resource consumption.

Hans-Wolfgang Loidl Proof-Carrying-Code
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Space Inference

Goal: Infer a linear upper bound on heap consumption.

Given Camelot program containing a function

start : string list -> unit

find linear function s such that start(l) will not call new() (only
make()) when evaluated in a heap h where

the freelist has length not less than s(n)

l points in h to a linear list of some length n

the freelist which forms a part of h is well-formed

the freelist does not overlap with l

Composing start with runtime environment that binds input to,
e.g., stdin yields a standalone program that runs within
predictable heap space.
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Extended (LFD) Types

Idea: Weights are attached to constructors in an extended
type-system.

ins : 1, int -> list(...<0>) -> list(...<0>), 0

says that the call ins x xs requires 1 heap-cell plus 0 heap cells
for each Cons cell of the list xs.

sort : 0, list(...<0>) -> list(...<0>), 0

sort does not consume any heap space.

start : 0, list(...<1>) -> unit, 0;

gives rise to the desired linear bounding function s(n) = n.
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High-level Type System: Function Call

A,B,C are types, k, k ′, n, n′ ∈ Q+, f is a Camelot function and
x1, . . . , xp are variables, Σ is a table mapping function names to
types.

Σ(f) = (A1, . . . ,Ap, k) −→ (C , k ′)
n ≥ k n − k + k ′ ≥ n′

Γ, x1 : A1, . . . , xp : Ap, n ` f(x1, . . . , xp) : C , n′ (Fun)

Hans-Wolfgang Loidl Proof-Carrying-Code
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Grail

Characteristics of Grail (Guaranteed Resource Aware Intermediate
Language):

Abstract representation of virtual machine languages

Language of dual identity: (impure) functional semantics and
(object-oriented) imperative semantics via expansion to virtual
machine code

Syntactic restrictions on functions to obtain coincidence of
semantics: no nesting; only tail-calls; λ-lifted; arguments and
parameters must match

Operational semantics with cost model E ` h, e ⇓ (h′, v , p)
relating expression e, environment E , (pre-)heap h, result v ,
(post-)heap h′ and cost component

p = 〈clock callc invkc invkdpth〉.
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Example: Insertion sort

Grail code:

method static public List ins (int a, List l) = ...Make(..,..,..)...
method static public List sort (List l) =
let fun f(List l) =

if l = null then null
else let val h = l.HD

val t = l.TL
val () = D.free (l)
val l = List.sort (t)

in List.ins (h, l) end
in f(l) end

This is a 1-to-1 translation of JVM code
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Grail: Syntax

e ∈ expr ::= null | int i | var x | prim p x x | new c [t1 := x1, . . . , tn := xn] |
x .t | x .t:=x | c � t | c � t:=x | let x = e in e | e ; e |
if x then e else e | call f | x ·m(a) | c �m(a)

a ∈ args ::= var x | null | i
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Grail: Semantic Domains

Locations l ∈ Loc ≡ nat
References r ∈ Ref ::= null |ref Loc
Values v ∈ Val ≡ int ∪ Ref ∪ {⊥}
Environments η ∈ Env ≡ (iname ⇀ int) ] (rname ⇀ Ref)
Heaps h ∈ Heap ≡ (Loc ⇀ cname)

(ifldname → Loc → int)(rfldname → Loc → Ref)
Resource record p ∈ RRec ≡ nat× nat× nat× nat

Hans-Wolfgang Loidl Proof-Carrying-Code
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Grail: Modelling resources

Resources are an extra component in operational and axiomatic
semantics (“resource record”).

p ∈ RRec = Lclock : nat, callcount : nat, invokedepth : nat, maxstack : natM

We use the following shorthand notation: 〈1 0 0 0〉
Operations on resource vectors are ⊕, as component-wise addition,
and ^:

(c, cc, id , ms) ^ (c ′, cc ′, id ′, ms ′) = (c + c ′, cc + cc ′, id + id ′, max(ms, ms ′))

Resource vectors can be generalised to abstract operations
resource algebras.
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Judgement of the Operational Semantics

Two semantics for Grail:

imperative: small-step call-by-value semantics, using a big
state structure;

functional: big-step call-by-value semantics, with
side-effecting operations;

A judgement in the functional operational semantics

E ` h, e ⇓n (h′, v , p)

is to be read as “starting with a heap h and a variable enviroment
E , the Grail code e evaluates in n steps to the value v , yielding the
heap h′ as result and consuming p resources.”
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Operational Semantics: Let- and Call-rules

E ` h, e1 ⇓n (h1, w , p) w 6= ⊥ E〈x := w〉 ` h1, e2 ⇓m (h2, v , q)

E ` h, let x = e1 in e2 ⇓max(n,m)+1 (h2, v , p1 ^ p2)
(let)

E ` h, bodyf ⇓n (h1, v , p)

E ` h, call f ⇓n+1 (h1, v , 〈1 1 0 0〉 ⊕ p1)
(call)
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A Program Logic for Grail

VDM-style logic with judgements of the form Γ B e : A, meaning

“in context Γ expression e fulfills the assertion A”

Type of assertions (shallow embedding):

A ≡ E → H → H → V → R→ B

No syntactic separation into pre- and postconditions.

Semantic validity |= e : A means

“whenever E ` h, e ⇓ (h′, v , p) then A E h h′ v p holds”

Note: Covers partial correctness; termination orthogonal.
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A Program Logic for Grail

Simplified rule for parameterless function call:

Γ, (Call f : A) B e : A+

Γ B Call f : A
(CallRec)

where e is the body of the function f and

A+ ≡ λ E h h′ v p.A(E , h, h′, v , p+)

where p+ is the updated cost component.
Note:

Context Γ: collects hypothetical judgements for recursion

Meta-logical guarantees: soundness, relative completeness

Hans-Wolfgang Loidl Proof-Carrying-Code
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Program Logic Rules

Γ B e1 : P Γ B e2 : Q

Γ B let x = e1 in e2 : λ E h h′ v p.∃ p1 p2 h1 w . P E h h1 w p1 ∧ w 6= ⊥ ∧
Q (E〈x := w〉) h1 h′ v p2) ∧
p = p1 ^ p2

(vlet)

Γ ∪ {(call f , P)}B bodyf : λ E h h′ v p. P E h h′ v 〈1 1 0 0〉 ⊕ p1,

Γ B call f : A
(vcall)

Hans-Wolfgang Loidl Proof-Carrying-Code
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Specific Features of the Program Logic

Unusual rules for mutually recursive methods and for
parameter adaptation in method invocations

(Γ, e : A) goodContext

B e : A
(Mutrec)

(Γ, c �m(a) : MS c m a) goodContext

Bc �m(b) : MS c m b
(Adapt)

Proof via admissible Cut rule, no extra derivation system

Global specification table MS, goodContext relates entries in
MS to the method bodies
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Example: Insertion sort

Specification:

insSpec ≡ MS List ins [a1, a2] =

λ E h h′ v p .∀ i r n X .

(E〈a1〉 = i ∧ E〈a2〉 = Ref r ∧ h, r |=X n
−→ |dom (h)|+ 1 = |dom (h′)| ∧

p ≤ . . .)

sortSpec ≡ MS List sort [a] =

λ E h h′ v p .∀ i r n X .

( E〈a〉 = Ref r ∧ h, r |=X n −→ |dom (h)| = |dom (h′)| ∧ p ≤ . . .)

Lemma:
insSpec ∧ sortSpec −→ B List � sort([xs]) : MS List sort [xs]
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Definition of Termination

Goal: Put termination on top of the core logic without changing it.

Termination for a given state E , h and expression e means that a
final state exists in the semantics.

Semantic definition of termination of e under precondition P:

{P} e ↓ ≡ ∀ E h . P E h −→ ∃ h′ v p . E ` h, e ⇓ (h′, v , p)

Type of a precondition: P ≡ E → H → B.

The “rules” of the termination logic are lemmas derived from the
Grail Logic.

Hans-Wolfgang Loidl Proof-Carrying-Code
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Selected Rules of the Termination Logic

∀E h. P E h −→ Ebxc 6= null

{P} x .f ↓
(Getf)

Note that the operational semantics gets stuck in case of a
null-reference.

{P} e ↓ {P ′} e′ ↓ B e : P −→bx :=c P ′

{P} let x = e in e′ ↓
(Let)

We use the following combinators to capture bindings in lets and
express the side condition in terms of a VDM assertion:

P −→bx :=c Q ≡ λ E h h′ v p. P E h −→ ∃r . v = r ∧ Q Ebx := rc h′
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Mutual Recursion

Same approach as for mutual recursion in partial correctness logic:
extend judgements to work over sets of expression and
preconditions.

Definition of goodContexT over a context G :

goodContexT G ≡ ∀(call f , P) ∈ G . ∀n.
(∀(call f ′, P ′) ∈ G .
∀m < n. {P ′ m} call f ′ ↓) −→ {P n} body f ↓

With this predicate we can prove the following mutual recursion
lemma:

finite G goodContexT G (call f , P) ∈ G

{λE h. ∃n. P n E h} call f ↓
(MUTREC)
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Discussion of the Program Logic

Expressive logic for correctness and resource consumption

Logic proven sound and complete

Termination built on top of a logic for partial correctness

Less suited for immediate program verification: not fully
automatic (case-splits, ∃-instantiations,. . . ), verification
conditions large and complex

Continue abstraction: loop unfolding in op. semantics →
invariants in general program logics → specific logic for
interesting (resource-)properties

Aim: exploit structure of Camelot compilation (freelist) and
program analysis

List.ins : 1, IL(0) → L(0), 0

List.sort : 0,L(0) → L(0), 0
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Heap Space Logic (LFD-assertions)

Translation of Hofmann-Jost type system to Grail, types
interpreted as relating initial to final freelist

Fixed assertion format JU, n, [∆] I T ,mK

List.ins : J{a, l}, 1, [a 7→ I, l 7→ L(0)] I L(0), 0K
List.sort : J{l}, 0, [l 7→ L(0)] I L(0), 0K

LFD types express space requirements for datatype
constructors, numbers n, m refer to the freelist length

Semantic definition by expansion into core bytecode logic,
derived proof rules using linear affine context management

Dramatic reduction of VC complexity!
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Semantic interpretation of JU , n, [∆] I T , mK

JU, n, [∆] I T , mK ≡
λ E h h′ v p.
∀ F N. (regionsExist(U, ∆, h, E) ∧ regionsDistinct(U, ∆, h, E) ∧

freelist(h, F , N) ∧ distinctFrom(U, ∆, h, E , F ))
−→
(∃ R S M G . v , h′ |=T R, S ∧ freelist(h′, G , M) ∧ R ∩ G = ∅ ∧

Bounded((R ∪ G), F , U, ∆, h, E) ∧modified(F , U, ∆, h, E , h′) ∧
sizeRestricted(n, N, m, S , M, U, ∆, h, E) ∧ dom h = dom h′)

• Formulae defined by BC expansion:

regionsDistinct(U, ∆, h, E) ≡
∀ x y Rx Ry Sx Sy .

({x, y} ⊆ U ∩ dom ∆ ∧ x 6= y ∧ E〈x〉, h |=∆(x) Rx , Sx ∧ E〈y〉, h |=∆(y) Ry , Sy )

−→ Rx ∩ Ry = ∅
sizeRestricted(n, N, m, S, M, U, ∆, h, E) ≡
∀ q C . Size(E , h, U, ∆, C) ∧ n + C + q ≤ N −→ m + S + q ≤ M

• You don’t want to read this — and you don’t need to!
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Proof System

Proof system with linear inequalities and linear affine type system
(U,∆) that guarantees benign sharing;

∆(x) = T n ≤ m

Γ B var x : J{x}, m, [∆] I T , nK
(Var)

Γ B e1 : JU1, n, [∆] I T1, mK Γ B e2 : JU2, m, [∆, x 7→ T1] I T2, kK
U1 ∩ (U2 \ {x}) = ∅ T1 = L( )

Γ B let x = e1 in e2 : JU1 ∪ (U2 \ {x}), n, [∆] I T2, kK
(Let)

∆(x) = L(k) l = n + k Γ B e : JU, l , [∆, t 7→ L(k)] I T , mK x /∈ U \ {t}
Γ B let t = x .TL in e : J(U \ {t}) ∪ {x}, n, [∆] I T , mK

(LetTL)

Note: Linearity relaxed in rules for compiled match-expressions
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Discussion of the Heap Space Logic

©..̂ LFD assertions practically useful and conceptually appealing

©..̂ Exploit program structure and compiler analysis: most effort
done once (in soundness proofs), application straight-forward

©..̂ “Classic PCC”: independence of derived logic from Isabelle
(no higher-order predicates, certifying constraint logic
programming)

©..̂ “Foundational PCC”: can unfold back to core logic and
operational semantics if desired

©.._ Generalisation to all Camelot datatypes needed

©.._ Soundness proofs non-trivial, and challenging to generalise to
more liberal sharing disciplines
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Certificate Generation

Goal: Automatically generate proofs from high-level types and
inferred heap consumption.

Approach: Use inferred space bounds as invariants. Use powerful
Isabelle tactics to automatically prove a statement on heap
consumption in the heap logic.

Example certificate (for list append):

Γ B snd (methtable Append append) : SPEC append
by (Wp append pdefs)

BAppend.append([RNarg x0, RNarg x1]) : sMST Append append [RNarg x0, RNarg x1]
by (fastsimp intro: Context good GCInvs simp: ctxt def)
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Summary

MRG works towards resource-safe global computing:

check resource consumption before executing downloaded
code;

automatically generate certificate out of a Camelot type.

Components of the picture

Proof-Carrying-Code infrastructure

Inference for space consumption in Camelot

Specialised derived assertions on top of a general program
logic for Grail

Certificate = proof of a derived assertion

Certificate generation from high-level types
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Further Reading

David Aspinall, Stephen Gilmore, Martin Hofmann, Donald
Sannella and Ian Stark, Mobile Resource Guarantees for Smart
Devices in CASSIS04 — Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices, LNCS 3362, 2005.
http://groups.inf.ed.ac.uk/mrg/publications/mrg/cassis2004.pdf
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Further Reading
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