
Encoding Proofs Program Logics TCB Size CCured

Proof-Carrying-Code
Applying formal methods in a distributed world

Hans-Wolfgang Loidl

LFE Theoretische Informatik, Institut für Informatik,
Ludwig-Maximilians Universität, München

June 30, 2005

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

1 Encoding Proofs

2 Program Logics

3 TCB Size

4 PCC in Action: CCured

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Meeting the Challenges

The previous lecture explained the concepts behind PCC, its
strengths and weaknesses:

©..̂ Unforgable certificates

©..̂ Separation of code safety and trust

©.._ High overhead in terms of certificate size and/or trusted code
base (TCB)

In this lecture we will look into the details of making the
components work.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

LF Terms

The Logical Framework (LF) is a generic description of logics.
Entities on three levels: objects, families of types, and kinds.

Kinds K ::= Type | Πx : A.K
Families A ::= a | Πx : A.B | λx : A.B | A M
Objects M ::= c | x | λx : A.M | M N

Signatures: mappings of constants to types and kinds
Contexts: mappings of variables to types

Signatures Σ ::= 〈〉 | Σ, a : K | Σ, c : A
Contexts Γ ::= 〈〉 | Γ, x : A

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

LF Type System

Judgements:
Γ `Σ A : K

meaning A has kind K in context Γ and signature Σ.

Γ `Σ M : A

meaning M has type A in context Γ and signature Σ.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

LF Type System (objects)

`Σ Γ c : A ∈ Σ

Γ `Σ c : A
(const-obj)

`Σ Γ x : A ∈ Γ

Γ `Σ x : A
(var-obj)

Γ, x : A `Σ M : B

Γ `Σ λx : A.M : Πx : A.B
(abs-obj)

Γ `Σ M : Πx : A.B Γ `Σ N : A

Γ `Σ M N : [N/x]B
(app-obj)

Γ `Σ M : A Γ `Σ A′ : type Γ `Σ A ≡ A′

Γ `Σ M : A′ (conv-obj)

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Encoding the Logic into LF

3 LF-level types are used: exp for expressions, pred for predicates,
and tp for types.

Encoding constants and terms:

+ : exp→ exp→ exp
true : pred
impl : pred→ pred→ pred
all : (pred→ pred) → pred
. . .

Note that all is higher order. We can use the application of
LF-level types to encode substitution.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Encoding the Logic into LF

3 LF-level types are used: exp for expressions, pred for predicates,
and tp for types.

Encoding constants and terms:

+ : exp→ exp→ exp
true : pred
impl : pred→ pred→ pred
all : (pred→ pred) → pred
. . .

Note that all is higher order. We can use the application of
LF-level types to encode substitution.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Encoding the Logic into LF

Encoding proofs: pf : pred→ Type

and i : Π p: pred. Π r : pred.
pf p → pf r → pf (and p r)

all i : Π pexp→ pred.
(Π v : exp. pf(p v)) → pf (all p)

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Certificate Size: Empirical Data

One of the major problems with PCC is the size of the certificates.
Size of proof terms in Isabelle/HOL:

Example Size of Size of Size of
proof term proof term proof script

(lines) (constructors) (lines)

AllImpl 6 31 8
AllExists 6 26 7
Arith 295 1250 2

AllImpl : ∀AB. (A ∧ B −→ B ∧ A)
AllExists : (∀P. (∃x . ∀y . P x y) −→ (∀y . ∃x . P x y))
Arith : ∀(m :: nat). m < m + 1

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Certificate Size: Empirical Data

One of the major problems with PCC is the size of the certificates.
Size of proof terms in Isabelle/HOL:

Example Size of Size of Size of
proof term proof term proof script

(lines) (constructors) (lines)

const 6 16 3
cons with clarsimp 31 136 3
swap 34819 137671 15
count-down 8584 25334 17
list-reversal 44082 162813 114

const : B expr.Int 1 : {(E , h, h′, v , p). h′ = h ∧ v = IVal 1 ∧ p = 〈(Suc 0) 0 0 0〉}
swap : B CALL swap : spectable swap

count : B MH InvokeStatic KountClass kount : Mspectable KountClass kount

rev : B CALL rev : spectable rev

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Deep vs Shallow Embedding

When formalising a logic, how shall we represent assertions?

Deep Embedding: define an explicit data structure of
assertions

data assn = true | false | and assn assn | ...

Define an evaluation function that interprets an assertion
eval : state ⇒ assn ⇒ value

Shallow Embedding: define assertions as functions over the
state
type assn = state ⇒ value

Deep embeddings are usually easier to deal with.
Meta-properties over assertions may be harder to prove, though.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Deep vs Shallow Embedding

When formalising a logic, how shall we represent assertions?

Deep Embedding: define an explicit data structure of
assertions

data assn = true | false | and assn assn | ...

Define an evaluation function that interprets an assertion
eval : state ⇒ assn ⇒ value

Shallow Embedding: define assertions as functions over the
state
type assn = state ⇒ value

Deep embeddings are usually easier to deal with.
Meta-properties over assertions may be harder to prove, though.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Deep vs Shallow Embedding

When formalising a logic, how shall we represent assertions?

Deep Embedding: define an explicit data structure of
assertions

data assn = true | false | and assn assn | ...

Define an evaluation function that interprets an assertion
eval : state ⇒ assn ⇒ value

Shallow Embedding: define assertions as functions over the
state
type assn = state ⇒ value

Deep embeddings are usually easier to deal with.
Meta-properties over assertions may be harder to prove, though.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Deep vs Shallow Embedding

When formalising a logic, how shall we represent assertions?

Deep Embedding: define an explicit data structure of
assertions

data assn = true | false | and assn assn | ...

Define an evaluation function that interprets an assertion
eval : state ⇒ assn ⇒ value

Shallow Embedding: define assertions as functions over the
state
type assn = state ⇒ value

Deep embeddings are usually easier to deal with.
Meta-properties over assertions may be harder to prove, though.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Styles of Program Logics

Two styles of program logics have been proposed.

Hoare-style logics: {P}e{Q}
Assertions are parameterised over the “current” state.
Example: Specification of an exponential function

{0 ≤ y ∧ x = X ∧ y = Y } exp(x , y) {r = XY }

Note: X ,Y are auxiliary variables and must not appear in e

VDM-style logics: e : P
Assertions are parameterised over pre- and post-state.
Because we have both pre- and post-state in the
post-condition we do not need a separate pre-condition.
Example: Specification of an exponential function

{0 ≤ y} exp(x , y) {r = x̀ ỳ}

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Styles of Program Logics

Two styles of program logics have been proposed.

Hoare-style logics: {P}e{Q}
Assertions are parameterised over the “current” state.
Example: Specification of an exponential function

{0 ≤ y ∧ x = X ∧ y = Y } exp(x , y) {r = XY }

Note: X ,Y are auxiliary variables and must not appear in e

VDM-style logics: e : P
Assertions are parameterised over pre- and post-state.
Because we have both pre- and post-state in the
post-condition we do not need a separate pre-condition.
Example: Specification of an exponential function

{0 ≤ y} exp(x , y) {r = x̀ ỳ}

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Styles of Program Logics

Two styles of program logics have been proposed.

Hoare-style logics: {P}e{Q}
Assertions are parameterised over the “current” state.
Example: Specification of an exponential function

{0 ≤ y ∧ x = X ∧ y = Y } exp(x , y) {r = XY }

Note: X ,Y are auxiliary variables and must not appear in e

VDM-style logics: e : P
Assertions are parameterised over pre- and post-state.
Because we have both pre- and post-state in the
post-condition we do not need a separate pre-condition.
Example: Specification of an exponential function

{0 ≤ y} exp(x , y) {r = x̀ ỳ}

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

A Simple while-language

Language:
e ::= skip

| x := t
| e1;e2

| if b then e1 else e2

| while b do e
| call

A judgement has this form (for now!)

` {P} e {Q}

A judgement is valid if the following holds

∀z s t. s
e
 t ⇒ P z s ⇒ Q z t

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

A Simple while-language

Language:
e ::= skip

| x := t
| e1;e2

| if b then e1 else e2

| while b do e
| call

A judgement has this form (for now!)

` {P} e {Q}

A judgement is valid if the following holds

∀z s t. s
e
 t ⇒ P z s ⇒ Q z t

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

A Simple Hoare-style Logic

` {P} skip {P}
(skip)

` {λz s. P z s[t/x]} x := t {P}
(assign)

` {P} e1 {R} {R} e2 {Q}
` {P} e1;e2 {Q}

(comp)

` {λz s. P z s ∧ b s} e1 {Q} ` {λz s. P z s ∧ ¬(b s)} e2 {Q}
` {P} if b then e1 else e2{Q}

(if)

` {λz s. P z s ∧ b s} e {P}
` {P} while b do e{λz s. P z s ∧ ¬(b s)}

(while)

` {P} body {Q}
` {P} CALL {Q}

(call)

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

A Simple Hoare-style Logic (structural

rules)

The consequence rule allows us to weaken the pre-condition and to
strengthen the post-condition:

∀s t. (∀z . P ′ z s ⇒ P z s) ` {P ′} e {Q ′} ∀s t. (∀z . Q z s ⇒ Q ′ z s)

` {P} e {Q}
(conseq)

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Recursive Functions

In order to deal with recursive functions, we need to collect the
knowledge about the behaviour of the functions.

We extend the judgement with a context Γ, mapping expressions
to Hoare-Triples:

Γ ` {P} e {Q}

where Γ has the form {. . . , (P ′, e ′,Q ′), . . .}.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Recursive Functions

Now, the call rule for recursive, parameter-less functions looks like
this:

Γ ∪ {(P, CALL,Q)} ` {P} body {Q}
Γ ` {P} CALL {Q}

(call)

We collect the knowledge about the (one) function in the context,
and prove the body.

Note: This is a rule for partial correctness: for total correctness we
need some form of measure.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Recursive Functions

To extract information out of the context we need and axiom rule

(P, e,Q) ∈ Γ

Γ ` {P} e {Q}
(ax)

Note that we now use a Gentzen-style logic (one with contexts)
rather than a Hilbert-style logic.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Recursive Functions

To extract information out of the context we need and axiom rule

(P, e,Q) ∈ Γ

Γ ` {P} e {Q}
(ax)

Note that we now use a Gentzen-style logic (one with contexts)
rather than a Hilbert-style logic.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

More Troubles with Recursive Functions

Assume we have this simple recursive program:

if i=0 then skip else i := i-1 ; call ; i := i+1

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

More Troubles with Recursive Functions

Assume we have this simple recursive program:

if i=0 then skip else i := i-1 ; call ; i := i+1

The proof of {i = N} call {i = N} proceeds as follows

` {i = N} CALL {i = N}

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

More Troubles with Recursive Functions

Assume we have this simple recursive program:

if i=0 then skip else i := i-1 ; call ; i := i+1

The proof of {i = N} call {i = N} proceeds as follows

{(i = N, CALL, i = N)} ` {i = N} i := i− 1; CALL; i := i + 1 {i = N}
` {i = N} CALL {i = N}

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

More Troubles with Recursive Functions

Assume we have this simple recursive program:

if i=0 then skip else i := i-1 ; call ; i := i+1

The proof of {i = N} call {i = N} proceeds as follows

{(i = N, CALL, i = N)} ` {i = N − 1} CALL {i = N − 1}
{(i = N, CALL, i = N)} ` {i = N} i := i− 1; CALL; i := i + 1 {i = N}

` {i = N} CALL {i = N}

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

More Troubles with Recursive Functions

Assume we have this simple recursive program:

if i=0 then skip else i := i-1 ; call ; i := i+1

The proof of {i = N} call {i = N} proceeds as follows

{(i = N, CALL, i = N)} ` {i = N − 1} CALL {i = N − 1}
{(i = N, CALL, i = N)} ` {i = N} i := i− 1; CALL; i := i + 1 {i = N}

` {i = N} CALL {i = N}

But how can we prove {i = N − 1}CALL{i = N − 1} from
{i = N}CALL{i = N}?

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

More Troubles with Recursive Functions

Assume we have this simple recursive program:

if i=0 then skip else i := i-1 ; call ; i := i+1

The proof of {i = N} call {i = N} proceeds as follows

{(i = N, CALL, i = N)} ` {i = N − 1} CALL {i = N − 1}
{(i = N, CALL, i = N)} ` {i = N} i := i− 1; CALL; i := i + 1 {i = N}

` {i = N} CALL {i = N}

But how can we prove {i = N − 1}CALL{i = N − 1} from
{i = N}CALL{i = N}?
We need to instantiate N with N − 1!

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Recursive functions

To be able to instantiate auxiliary variables we need a more
powerful consequence rule:

Γ ` {P ′} e {Q ′} ∀s t. (∀z . P ′ z s ⇒ Q ′ z t) ⇒ (∀z . P z s ⇒ Q z t)

Γ ` {P} e {Q}
(conseq)

Now we are allowed to proof P ⇒ Q under the knowledge that we
can choose z freely as long as P ′ ⇒ Q ′ is true.
This complex rule for adaptation is one of the main disadvantages
of Hoare-style logics.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Extending the Logic with Termination

The Call and While rules need to use a well-founded ordering <
and a side condition saying that the body is smaller w.r.t. this
ordering:

wf <
∀s ′. {(λz s.P z s ∧ s < s ′, CALL,Q)}
`T {λz s.P z s ∧ s = s ′}body {Q}

`T {P} CALL{Q}

Note the explicit quantification over the state s’. Read it like this

The pre-state s must be smaller than a state s ′, which is
the post-state.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Extending the Logic with Mutual Recursion

To cover mutual recursion a different derivation system `M is
defined.
Judgements in `M are extended to sets of Hoare triples, informally:

Γ `M {(P1, e1,Q1), . . . , (Pn, en,Qn)}

The Call rule is generalised as follows⋃
p. {(P p, CALL p,Q p)} `M

⋃
p.{(P p, body p,Q p)}

∅ `M
⋃

p. {(P p, CALL p,Q p)}

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Further Reading

Thomas Kleymann, Hoare Logic and VDM: Machine-Checked
Soundness and Completeness Proofs, Lab. for Foundations of
Computer Science, Univ of Edinburgh, LFCS report
ECS-LFCS-98-392, 1999.
http://www.lfcs.informatics.ed.ac.uk/reports/98/ECS-LFCS-98-392/ECS-LFCS-98-392.pdf

Tobias Nipkow, Hoare Logics for Recursive Procedures and
Unbounded Nondeterminism, in CSL 2002 — Computer
Science Logic, LNCS 2471, pp. 103–119, Springer, 2002.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Challenge: Minimising the TCB

This aspect is the emphasis of the Foundational PCC approach.

An infrastructure developed by the group of Andrew Appel at
Princeton [1].

Motivation: With complex logics and VCGs, there is a big danger
of introducing bugs in software that needs to be trusted.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

The Philosophy of Foundational PCC

Define safety policy directly on the operational semantics of the
code.

Certificates are proofs over the operational semantics.

It minimises the TCB because no trusted verification condition
generator is needed.

Pros and cons:

©..̂ more flexible: not restricted to a particular type system as
the language in which the proofs are phrased;

©..̂ more secure: no reliance on VCG.

©.._ larger proofs

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Conventional vs Foundational PCC

Re-examine the logic for memory safety, eg.

m ` e : τ list e 6= 0

m ` e : addr ∧ m ` e + 4 : addr ∧
m ` sel(m, e) : τ ∧ m ` sel(m, e + 4) : τ list

(ListElim)

The rule has built-in knowledge about the type-system, in this
case representing the data layout of the compiler (“Type
specialised PCC”) =⇒ dangerous if soundness of the logic is not
checked mechanically!

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Logic rules in Foundational PCC

In foundational PCC the rules work on the operational semantics:

m |= e : τ list e 6= 0

m |= e : addr ∧ m |= e + 4 : addr ∧
m |= sel(m, e) : τ ∧ m |= sel(m, e + 4) : τ list

(ListElim)

This looks similar to the previous rule but has a very different
meaning: |= is a predicate over the formal model of the
computation, and the above rule can be proven as a lemma, ` is
an encoding of a type-system on top of the operational semantics
and thus needs a soundness proof.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Components of a foundational PCC

infrastructure

Operational semantics and safety properties are directly encoded in
a higher-order logic.

As language for the certificates, the LF metalogic framework is
used.

For development and for proof-checking the Twelf theorem proofer
is used.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Specifying safety

To specify safety, the operational semantics is written in such a
way, that it gets stuck whenever the safety condition is violated.

Example: operational semantics on assembler code.
Safety policy: “only readable addresses are loaded”.
Define a predicate: readable(x) ≡ 0 ≤ x ≤ 1000
The semantics of a load operation LD ri, c(rj) is now written as
follows:

load(i , j , c) ≡ λ r m r ′ m′.
r ′(i) = m(r(j) + c) ∧ readable(r(j) + c) ∧
(∀x 6= i . r ′(x) = r(x)) ∧ m′ = m

Note: the clause for nothing else changes, quickly becomes
awkward when doing these proofs
=⇒ Separation Logic (Reynolds’02) tackles this problem.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Specifying safety

To specify safety, the operational semantics is written in such a
way, that it gets stuck whenever the safety condition is violated.

Example: operational semantics on assembler code.
Safety policy: “only readable addresses are loaded”.
Define a predicate: readable(x) ≡ 0 ≤ x ≤ 1000

The semantics of a load operation LD ri, c(rj) is now written as
follows:

load(i , j , c) ≡ λ r m r ′ m′.
r ′(i) = m(r(j) + c) ∧ readable(r(j) + c) ∧
(∀x 6= i . r ′(x) = r(x)) ∧ m′ = m

Note: the clause for nothing else changes, quickly becomes
awkward when doing these proofs
=⇒ Separation Logic (Reynolds’02) tackles this problem.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Specifying safety

To specify safety, the operational semantics is written in such a
way, that it gets stuck whenever the safety condition is violated.

Example: operational semantics on assembler code.
Safety policy: “only readable addresses are loaded”.
Define a predicate: readable(x) ≡ 0 ≤ x ≤ 1000
The semantics of a load operation LD ri, c(rj) is now written as
follows:

load(i , j , c) ≡ λ r m r ′ m′.
r ′(i) = m(r(j) + c) ∧ readable(r(j) + c) ∧
(∀x 6= i . r ′(x) = r(x)) ∧ m′ = m

Note: the clause for nothing else changes, quickly becomes
awkward when doing these proofs
=⇒ Separation Logic (Reynolds’02) tackles this problem.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Specifying safety

To specify safety, the operational semantics is written in such a
way, that it gets stuck whenever the safety condition is violated.

Example: operational semantics on assembler code.
Safety policy: “only readable addresses are loaded”.
Define a predicate: readable(x) ≡ 0 ≤ x ≤ 1000
The semantics of a load operation LD ri, c(rj) is now written as
follows:

load(i , j , c) ≡ λ r m r ′ m′.
r ′(i) = m(r(j) + c) ∧ readable(r(j) + c) ∧
(∀x 6= i . r ′(x) = r(x)) ∧ m′ = m

Note: the clause for nothing else changes, quickly becomes
awkward when doing these proofs
=⇒ Separation Logic (Reynolds’02) tackles this problem.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Main issues in FPCC

The main task in this framework becomes the semantic
modelling of types: indexed semantic model to describe
contravariant types, eg. e = APP of e e | LAM of e → e

Naive model: type = set of values

Indexed model: type = set of < k, v >, where k is an
approximation index, v is a value
< k, v >∈ τ means v has approximate type τ and programs
running less than k steps can’t tell a difference
=⇒ induction principle over steps of execution

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Further Reading

Andrew Appel, Foundational Proof-Carrying Code in LICS’01
— Symposium on Logic in Computer Science, 2001.
http://www.cs.princeton.edu/~appel/papers/fpcc.pdf

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

CCured

A system for checking pointer-safety of C programs, developed by
the group of George Necula at Berkeley.

Uses a hybrid mechanism of static type checking and run-time
checks.

Goal: Prove pointer safety statically, where possible, and minimise
required run-time checks.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

The CCured type system

Extension of the standard C type system with extension for
pointers into arrays and dynamic types.

Efficient type inference is possible and demonstrated for this type
system.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

The core language

Mini-C language:

e ::= x | n | e1 op e2 | (τ)e | e1 ⊕ e2 | !e
c ::= skip | c1;c2 | e1 := e2

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

The CCured type system: pointers

C contains 2 evil pointer operations: arithmetic and casts.

The type system distinguishes between 3 kinds of pointers:

Safe pointers: no arithmetic or casts; represented as an
address

Sequence pointers: arithmetic but no casts; represented as
a region

Dynamic pointers: casts, all bets are off! represented as a
region

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Example program

Sum over an array of boxed integers:

int **a; /* array */ int i; // index

int acc; /* accumulator */ int **p; // elem ptr

int *e; /* unboxer */

acc = 0;

for (i=0; i<100; i++) {

p = a + i; // ptr arithm

e = *p; // read elem

while ((int)e % 2 == 0) { // check tag

e = *(int **)e; // unbox

}

acc += ((int)e >> 1); // strip tag

}

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Example program

Sum over an array of boxed integers:

int **a; /* array */ int i; // index

int acc; /* accumulator */ int **p; // elem ptr

int *e; /* unboxer */

acc = 0;

for (i=0; i<100; i++) {

p = a + i; // ptr arithm

e = *p; // read elem

while ((int)e % 2 == 0) { // check tag

e = *(int **)e; // unbox

}

acc += ((int)e >> 1); // strip tag

}

a and p point into an array with elems of type int *

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Example program

Sum over an array of boxed integers:

int **a; /* array */ int i; // index

int acc; /* accumulator */ int **p; // elem ptr

int *e; /* unboxer */

acc = 0;

for (i=0; i<100; i++) {

p = a + i; // ptr arithm

e = *p; // read elem

while ((int)e % 2 == 0) { // check tag

e = *(int **)e; // unbox

}

acc += ((int)e >> 1); // strip tag

}

a is subject to pointer arithm (“sequence pointer”)
=⇒ check for out of bounds

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Example program

Sum over an array of boxed integers:

int **a; /* array */ int i; // index

int acc; /* accumulator */ int **p; // elem ptr

int *e; /* unboxer */

acc = 0;

for (i=0; i<100; i++) {

p = a + i; // ptr arithm

e = *p; // read elem

while ((int)e % 2 == 0) { // check tag

e = *(int **)e; // unbox

}

acc += ((int)e >> 1); // strip tag

}

p has no arithmetic (“safe pointer”)
=⇒ no bounds check needed

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Example program

Sum over an array of boxed integers:

int **a; /* array */ int i; // index

int acc; /* accumulator */ int **p; // elem ptr

int *e; /* unboxer */

acc = 0;

for (i=0; i<100; i++) {

p = a + i; // ptr arithm

e = *p; // read elem

while ((int)e % 2 == 0) { // check tag

e = *(int **)e; // unbox

}

acc += ((int)e >> 1); // strip tag

}

e is subject to a type cast (“dynamic pointer”)
=⇒ nothing known about underlying type

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Safe pointers

Invariant for SAFE pointers:

A SAFE pointer to type T is either 0 or else it points to
a valid area of memory containing an object of type T .
Furthermore, all other pointers to the same area are also
SAFE and agree on the type T of the stored object.

Run-time check: null-pointer reference.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Sequence pointers

Invariants for Sequence pointers:

Cannot be cast (passing actual arguments and returning are
implicit casts).

Can be subject to pointer arithmetic (adding or subtracting an
integer from it).

Can be set to any integer value.

Can be cast to an integer and can be subtracted from another
pointer (useful for comparisons).

Sequence pointers are represented using three words.

Run-time checks: null-pointer check and bounds check.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Operational Semantics

The value of an integer, or a safe pointer is an integer n; the value
of a sequence or dynamic pointer is a home, modelled as a pair
N× N of start address and offset.

v ::= n | 〈h, n〉

Each home is tagged as being an integer or a pointer, and has an
associated kind and size functions. The semantic domain for
pointers:

|| int ||H = N
|| DYNAMIC ||H = {〈h, n〉 | h ∈ H ∧ (h = 0 ∨ kind(h) = untyped}
|| τ ref SEQ ||H = {〈h, n〉 | h ∈ H ∧ (h = 0 ∨ kind(h) = typed(τ)}
|| τ ref SAFE ||H = {h + i | h ∈ H ∧ 0 ≤ i ≤ size(h) ∧

(h = 0 ∨ kind(h) = typed(τ)}

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Operational Semantics

The value of an integer, or a safe pointer is an integer n; the value
of a sequence or dynamic pointer is a home, modelled as a pair
N× N of start address and offset.

v ::= n | 〈h, n〉

Each home is tagged as being an integer or a pointer, and has an
associated kind and size functions. The semantic domain for
pointers:

|| int ||H = N
|| DYNAMIC ||H = {〈h, n〉 | h ∈ H ∧ (h = 0 ∨ kind(h) = untyped}
|| τ ref SEQ ||H = {〈h, n〉 | h ∈ H ∧ (h = 0 ∨ kind(h) = typed(τ)}
|| τ ref SAFE ||H = {h + i | h ∈ H ∧ 0 ≤ i ≤ size(h) ∧

(h = 0 ∨ kind(h) = typed(τ)}

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Operational Semantics (pointers)

Σ,M ` e1 ⇓ 〈h, n1〉 Σ,M ` e2 ⇓ n2

Σ,M ` e1 ⊕ e2 ⇓ 〈h1, n1 + n2〉
(Pointer Artihm)

Σ,M ` e ⇓ 〈h, n〉
Σ,M ` (int)e ⇓ h + n

(CastToInt)

Σ,M ` e ⇓ n

Σ,M ` (τ ref SEQ)e ⇓ 〈0, n〉
(CastToSeq)

Σ,M ` e ⇓ 〈h, n〉 0 ≤ n ≤ size(h)

Σ,M ` (τ ref SAFE)e ⇓ h + n
(CastToSafe)

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Operational Semantics (read operations)

Two kinds of reads, with different obligations for run-time checks:

Σ,M ` e ⇓ n n 6= 0

Σ,M `!e ⇓ M(n)
(SafeRd)

Σ,M ` e ⇓ 〈h, n〉 h 6= 0 0 ≤ n ≤ size(h)

Σ,M `!e ⇓ M(h + n)
(DynRd)

Σ,M ` e1 ⇓ n n 6= 0 Σ,M ` e2 ⇓ v

Σ,M ` e1 := e2 ⇓ M(n 7→ v)
(SafeWr)

Σ,M ` e1 ⇓ 〈h, n〉 h 6= 0 0 ≤ n ≤ size(h) Σ,M ` e2 ⇓ v

Σ,M ` e1 := e2 ⇓ M(h + n 7→ v)
(DynWr)

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

The CCured type system: rules

The type system keeps track of the kind of pointers.
Rules for converting pointers:

τ ≤ τ τ ≤ int int ≤ τ ref SEQ

int ≤ DYNAMIC

τ ref SEQ ≤ τ ref SAFE

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Typing rules for commands

Γ ` skip
Γ ` c1 Γ ` c2

Γ ` c1; c2

Γ ` e : τ ref SAFE Γ ` e′ : τ

Γ ` e := e′

Γ ` e : DYNAMIC Γ ` e′ : DYNAMIC

Γ ` e := e′

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Typing rules for expressions

Γ(x) = τ

Γ ` x : τ

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 op e2 : int

Γ ` e : τ ′ τ ′ ≤ τ

Γ ` (τ)e : τ

Γ ` (τ ref SAFE)0 : τ ref SAFE
Γ ` e1 : τ ref SEQ Γ ` e2 : int

Γ ` e1 ⊕ e2 : τ ref SEQ

Γ ` e1 : DYNAMIC Γ ` e2 : int

Γ ` e1 ⊕ e2 : DYNAMIC

Γ ` e : τ ref SAFE

Γ `!e : τ

Γ ` e : DYNAMIC

Γ `!e : DYNAMIC

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Theorems

Σ,MH ` e ⇓ CheckFailed means a run-time check failed during the
execution of expression e.

Theorem (Progress and type preservation)

If Γ ` e : τ and Σ ∈|| Γ ||H and M is well-formed, then either
Σ,MH ` e ⇓ CheckFailed or Σ,MH ` e ⇓ v and v ∈|| τ ||H .

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Theorems

Σ,MH ` e ⇓ CheckFailed means a run-time check failed during the
execution of expression e.

Theorem (Progress and type preservation)

If Γ ` e : τ and Σ ∈|| Γ ||H and M is well-formed, then either
Σ,MH ` e ⇓ CheckFailed or Σ,MH ` e ⇓ v and v ∈|| τ ||H .

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Theorems

Σ,MH ` c =⇒ CheckFailed means a run-time check failed during
the execution of command c .

Theorem (Progress for commands)

If Γ ` c and Σ ∈|| Γ ||h and MH is well-formed then either
Σ,MH ` c =⇒ CheckFailed or Σ,MH ` c =⇒ M ′

H and M ′
H is

well-formed.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Theorems

Σ,MH ` c =⇒ CheckFailed means a run-time check failed during
the execution of command c .

Theorem (Progress for commands)

If Γ ` c and Σ ∈|| Γ ||h and MH is well-formed then either
Σ,MH ` c =⇒ CheckFailed or Σ,MH ` c =⇒ M ′

H and M ′
H is

well-formed.

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Main results

An efficient inference algorithm attaches
ref SEQ, ref SAFE, DYNAMIC annotations to plain C code.

Most of the checks can be done statically.

The performance overhead of the remaining run-time checks
is moderate: 0–150%

Hans-Wolfgang Loidl Proof-Carrying-Code

Encoding Proofs Program Logics TCB Size CCured

Further Reading

CCured: Type-Safe Retrofitting of Legacy Code, in POPL’02
— ACM Symposium on Principles of Programming Languages,
2002.

Hans-Wolfgang Loidl Proof-Carrying-Code

	Encoding Proofs
	Program Logics
	TCB Size
	PCC in Action: CCured

