
Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Proof-Carrying-Code
Applying formal methods in a distributed world

Hans-Wolfgang Loidl

LFE Theoretische Informatik, Institut für Informatik,
Ludwig-Maximilians Universität, München

June 30, 2005

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

1 Motivation

2 Basic Concepts

3 Main challenges
Certificate Size
Size of the TCB
Performance

4 Components of the PCC Architecture
Certifying Compiler
Validator
VCG

5 An Example

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Motivation

Downloading software over the network is nowadays common-place.

But who says that the software does what it promises to do?

Who protects the consumer from malicious software or other
undesirable side-effects?

=⇒ Mechanisms for ensuring that a program is
“well-behaved” are needed.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Authentication for Mobile Code

The main mechanisms used nowadays are based on authentication.
Java:

Originally a sandbox model where all code is untrusted and
executed in a secure environment (sandbox)

Since version 1.2 security policies can be defined to have more
fine-grained control over the level of security defined.
Managed through cryptographic signatures on the code.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Authentication for Mobile Code

Windows:

Microsoft’s Authenticode attaches cryptographic signatures to
the code.

User can distinguish code from different providers.

Very widely used — more or less compulsory in Windows XP
for drivers.

But, all these mechanisms say nothing about the code, only
about the supplier of the code!

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Whom do you trust completely?

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Maybe that’s not such a good idea!

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Proof-Carrying-Code (PCC): The idea

Goal: Safe execution of untrusted code.

PCC is a software mechanism that allows a host system
to determine with certainty that it is safe to execute a
program supplied by an untrusted source.

Method: Together with the code, a certificate describing its
behaviour is sent.

This certificate is a condensed form of a formal proof of this
behaviour.

Before execution, the consumer can check the behaviour, by
running the proof against the program.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

A PCC architecture

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Program Verification Techniques

Many techniques for PCC come from the area of program
verification. Main differences:
General program verification

is trying to verify good behaviour (correctness).

is usually interactive

requires at least programmer annotations as invariants to the
program

PCC

is trying to falsify bad behaviour

must be automatic

may be based on inferred information from the high-level

Observation: Checking a proof is much simpler than creating one

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Program Verification Techniques

Many techniques for PCC come from the area of program
verification. Main differences:
General program verification

is trying to verify good behaviour (correctness).

is usually interactive

requires at least programmer annotations as invariants to the
program

PCC

is trying to falsify bad behaviour

must be automatic

may be based on inferred information from the high-level

Observation: Checking a proof is much simpler than creating one

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Program Verification Techniques

Many techniques for PCC come from the area of program
verification. Main differences:
General program verification

is trying to verify good behaviour (correctness).

is usually interactive

requires at least programmer annotations as invariants to the
program

PCC

is trying to falsify bad behaviour

must be automatic

may be based on inferred information from the high-level

Observation: Checking a proof is much simpler than creating one

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

PCC: Selling Points

Advantages of PCC over present-day mechanisms:

General mechanism for many different safety policies

Behaviour can be checked before execution

Certificates are tamper-proof

Proofs may be hard to generate (producer) but are easy to
check (consumer)

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

A more general framework

In general the code producer might be different from the proof
producer. In this case, validation becomes a 2 stage process

The code consumer receives an annotated program

Run the VCG to generate the property to be proven

Transfer the VCs to a proof producer

Check the proof delivered by the proof producer w.r.t. VCs

Note that no trust relationship is needed here either, since the final
check is still done on the code consumer side.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

A PCC architecture

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Variants to this framework

In particular scenarios the following specialisations might be
appropriate:

Classic PCC: The code producer may run VCG itself and
retrieve a proof from proof producer, to then send a
code/certificate pair to the consumer
Advantage: saves a communication step.

Simple PCC: For very simple properties the code consumer
might do proof generation
Advantage: avoids the transmission of an entire proof.

Delegated Checking: Separate code consumer and code
executer by introducing a trust relationship between both.
Advantage: handle complex certificates for programs on tiny
systems, e.g. smartcards.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Variants to this framework

In particular scenarios the following specialisations might be
appropriate:

Classic PCC: The code producer may run VCG itself and
retrieve a proof from proof producer, to then send a
code/certificate pair to the consumer
Advantage: saves a communication step.

Simple PCC: For very simple properties the code consumer
might do proof generation
Advantage: avoids the transmission of an entire proof.

Delegated Checking: Separate code consumer and code
executer by introducing a trust relationship between both.
Advantage: handle complex certificates for programs on tiny
systems, e.g. smartcards.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Variants to this framework

In particular scenarios the following specialisations might be
appropriate:

Classic PCC: The code producer may run VCG itself and
retrieve a proof from proof producer, to then send a
code/certificate pair to the consumer
Advantage: saves a communication step.

Simple PCC: For very simple properties the code consumer
might do proof generation
Advantage: avoids the transmission of an entire proof.

Delegated Checking: Separate code consumer and code
executer by introducing a trust relationship between both.
Advantage: handle complex certificates for programs on tiny
systems, e.g. smartcards.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

What does “well-behaved” mean?

PCC is a general framework and can be instantiated to many
different safety policies.

A safety policy defines the meaning of “well-behaved”.

Examples:

(functional) correctness

type correctness ([1])

array bounds and memory access (CCured)

resource-consumption (MRG)

network interaction (e.g. packet filtering [2])

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

What does “well-behaved” mean?

PCC is a general framework and can be instantiated to many
different safety policies.

A safety policy defines the meaning of “well-behaved”.

Examples:

(functional) correctness

type correctness ([1])

array bounds and memory access (CCured)

resource-consumption (MRG)

network interaction (e.g. packet filtering [2])

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Main Challenges of PCC

PCC is a very powerful mechanism. Coming up with an efficient
implementation of such a mechanism is a challenging task.

The main problems are

Certificate Size

Size of the trusted code base (TCB)

Performance of validation

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Certificate Size

A certificate is a formal proof, and can be encoded as e.g. LF Term.

BUT: such proof terms include a lot of repetition
=⇒ huge certificates

Approaches to reduce certificate size:

Compress the general proof term and do reconstruction on the
consumer side

Transmit only hints in the certificate (oracle strings)

Embed the proving infrastructure into a theorem prover and
use its tactic language

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Size of the Trusted Code Base (TCB)

The PCC architecture relies on the correctness of components such
as VC-generation and validation.

But these components are complex and implementation is
error-prone.

Approaches for reducing size of TCB:

Use proven/established software

Build everything up from basics foundational PCC (Appel)

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Performance

Even though validation is fast compared to proof generation, it is
on the critical path of using remote code
=⇒ performance of the validation is crucial for the acceptance of
PCC.

Approaches:

Write your own specialised proof-checker (for a specific
domain)

Use hooks of a general proof-checker, but replace components
with more efficient routines, e.g. arithmetic

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Certifying Compiler

Producing a certificate amounts to verifying a statement
determined by the safety policy for a given program.

Can be very time-consuming but is just a one-off process.

Complexity very much depends on the safety policy.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Validator

The consumer has to check that the received code fulfils the
properties defined in safety policy (validation).

The consumer needs to establish that

the certificate corresponds to the program

the certificate is correct

the certificate corresponds to the safety policy

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Validator

What exactly is proven?

The safety policy is typically encoded as a pre-post-condition pair
(P/Q) for a program e, and a logic describing how to reason.

Running the verification condition generator VCG over e and Q,
generates a set of conditions, that need to be fulfilled in order for
the program to be safe.

The condition that needs to be proven is:

P =⇒ VC (e,Q)

.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Structure of the VCG

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

An Example: type-safe assembler code

Scenario: type-safe assembler code as target of the compilation of
a high-level language.

Compiler guarantees type-safety, but what about imported foreign
code for level data access?

PCC approach: define an appropriate safety policy and attach a
certificate to the foreign code imported.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

SML code for sum

datatype T = Int of int | Pair of int * int
fun sum (l : T list) =
let
fun foldr f a nil = a

| foldr f a (h::t) = foldr f (f(a,h)) t
in
foldr (fn (acc, Int i) => acc + i

| (acc, Pair(i,j) => acc+i+j))
0 l

Goal: Write an optimised version of sum in assembler code, and
make sure the code is type-safe.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Data representation

val r0 : int = 5
val r1 : int*int = (2,3)
val r2 : T = Pair r1
val r3 : T = Int 6
val r4 : T list = [r3, r2]

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Components of the infrastructure

Safety policy: every read operation references a readable address

Language: abstraction over assembler code (akin to DEC
assembler)

State: register environment and program counter;

e ::= n | ri | sel(m, e) | e1 + e2

m ::= rm | upd(m, e1, e2)

sel(m, e) is the contents at memory location e in store m;
upd(m, e1, e2) is a new store, updating the contents in location e1

with the value in e2

Logic: encodes data representation

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Language

A subset of DEC assembler code.

e ::= ADD rs, op, rd
| LD rd, n(rs)
| ST rs, n(rd)
| BEQ rs, n
| INV I

where rs , rd are registers

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Operational Semantics of the Abstract

Machine

The (small step) operational semantics defines a transition of a
state (ρ, pc) when evaluating the code at pc.

(ρ, pc)
(ρ ◦ (rd 7→ ρ(rs) + ρ(op)), pc + 1) if Πpc = ADD rs, op, rd
(ρ ◦ (rd 7→ sel(ρ(rm), ρ(rs) + n), pc + 1) if Πpc = LD rd, n(rs)

∧ rm ` rs + n : addr
(ρ ◦ upd(ρ(rm), ρ(rd) + n, ρ(rs)), pc + 1) if Πpc = ST rs, n(rd)

∧ rm ` rd + n : addr
(ρ, pc + n + 1) if Πpc = BEQ rs, n ∧ rs = 0
(ρ, pc + 1) if Πpc = BEQ rs, n ∧ rs 6= 0
(ρ, pc + 1) if Πpc = INV I

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Logic: Elimination rules

The logic consists of a fragment of first-order predicate logic, and
special rules on data-type constructors.

m ` e : τ1 ∗ τ2

m ` e : addr ∧ m ` e + 4 : addr ∧
m ` sel(m, e) : τ1 ∧ m ` sel(m, e + 4) : τ2

(ProdElim)

m ` e : τ1 + τ2

m ` e : addr ∧ m ` e + 4 : addr ∧
sel(m, e) = 0 ⇒ m ` sel(m, e + 4) : τ1 ∧
sel(m, e) 6= 0 ⇒ m ` sel(m, e + 4) : τ2

(SumElim)

m ` e : τ list e 6= 0

m ` e : addr ∧ m ` e + 4 : addr ∧
m ` sel(m, e) : τ ∧ m ` sel(m, e + 4) : τ list

(ListElim)
Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Logic: Introduction rules

m ` e1 : int m ` e2 : int

m ` e1 + e2 : int
(SumIntro)

m ` 0 : int
(Const)

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Assembler code for sum

99sum:MMMMMMMMMMMkill
%r0 is 1

0 sum:INV rm ` r0 : t list

1 MOV r1, 0 % initialise acc
2 L2 INV rm ` r0 : T list ∧ rm ` r1 : int

3 BEQ r0, L14 % is list empty?
4 LD r2,0(r0) % load head
5 LD r0,4(r0) % load tail
6 LD r3,0(r2) % load constructor
7 LD r2,4(r2) % load data
8 BEQ r3, L12 % is an integer?
9 LD r3,0(r2) % load i
10 LD r2,4(r2) % load j
11 ADD r2,r3,r2 % add i and j
12L12 ADD r1,r2,r1 % do the addition
13 BR L2 % loop
14L14 MOV r0,r1 % copy result to r0
15 RET

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Safety property

The interface for the function sum is a pair of pre- and
post-conditions, written as a Hoare-style judgement:

{rm ` r0 : T list} sum {rm ` r0 : int}

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

A Verification Condition Generator

The VCG computes the side-conditions necessary for the
post-condition Post to hold after executing the code starting at Πi .

VCi =

(rs + op/rd)VCi+1 if Πi = ADD rs, op, rd
rm ` rs + n : addr ∧
(sel(rm, rs + n)/rd)VCi+1 if Πi = LD rd, n(rs)
rm ` rd + n : addr∧
upd(ρ(rm), ρ(rd) + n, ρ(rs))VCi+1 if Πi = ST rs, n(rd)
(rs = 0 ⇒ VCi+n+1)∧
(rs 6= 0 ⇒ VCi+1) if Πi = BEQ rs, n
Post if Πi = RET
I if Πi = INV I

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

VCs generated for this example

The VCs for the example program consist of 2 clauses:

Clause 1: the loop invariant holds when reaching the head of the
loop from the function entry

rm ` r0 : T list ⇒ (rm ` r0 : T list ∧ rm ` r0 : int)

Clause 2: expresses the loop invariant is preserved and it entails
the post-condition.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

Generating the proof

The code producer generates the VCs and finds a proof by
applying rules of a fragment of first-order predicate logic.

This can be done by encoding the program as an LF (Logical
Frameworks) signature and the verification condition as an LF
type. Finding the proof then means doing type-checking in LF.

Cheaper: make use of high-level (type) information and bring this
information down to the low-level representation.

Embedding the logic in a modern theorem prover, powerful tactics
(and tactic languages) for proof-search can be used.

A performance bottleneck is often the poor support for arithmetic.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

The main theorem

Main theorem:

Theorem

For any program Π, invariants Inv and post-condition Post: if
BVC(Π, Inv,Post) and the initial state fulfills the pre-condition
Pre, then the program reads only from valid memory locations (as
defined by the typing rules) and if the program terminates the final
state fulfills the post-condition.

Hans-Wolfgang Loidl Proof-Carrying-Code

Motivation Basic Concepts Main challenges PCC Components An Example Further Reading

For Further Reading

George Necula, Proof-carrying code in POPL’97 —
Symposium on Principles of Programming Languages, Paris,
France, 1997.
http://raw.cs.berkeley.edu/Papers/pcc popl97.ps

George Necula, Proof-Carrying Code: Design and
Implementation in Proof and System Reliability,
Springer-Verlag, 2002.
http://raw.cs.berkeley.edu/Papers/marktoberdorf.pdf

Hans-Wolfgang Loidl Proof-Carrying-Code

	Motivation
	Basic Concepts
	Main challenges
	Certificate Size
	TCB Size
	Performance

	Components of the PCC Architecture
	Certifying Compiler
	Validator
	VCG

	An Example
	Further Reading

