

Model Checking (Part 3)

Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.uni-linz.ac.at

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

1/57

The Basic Approach

Translation of the original problem to a problem in automata theory.

- Original problem: $S \models P$.
 - $S = \langle I, R \rangle$, PLTL formula *P*.
 - Does property *P* hold for every run of system *S*?
- Construct system automaton S_A with language $\mathcal{L}(S_A)$.
 - A language is a set of infinite words.
 - Each such word describes a system run.
 - $\mathcal{L}(S_A)$ describes the set of runs of S.
- **Construct property automaton** P_A with language $\mathcal{L}(P_A)$.
 - $\mathcal{L}(P_A)$ describes the set of runs satisfying P.
- Equivalent Problem: $\mathcal{L}(S_A) \subseteq \mathcal{L}(P_A)$.
 - The language of S_A must be contained in the language of P_A .

There exists an efficient algorithm to solve this problem.

1. Basic PLTL Model Checking

- 2. Translating PLTL Formulas to Automata
- 3. Optimized PLTL Model Checking

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

2/57

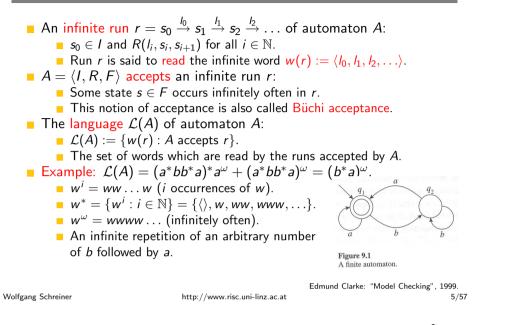
Finite State Automata

A (variant of a) labeled transition system in a finite state space.

- **Take finite sets** *State* and *Label*.
 - The state space State.
 - The alphabet Label.
- A (finite state) automaton $A = \langle I, R, F \rangle$ over *State* and *Label*:
 - A set of initial states $I \subseteq State$.
 - A labeled transition relation $R \subseteq Label \times State \times State$.
 - A set of final states $F \subseteq State$.
 - Büchi automata: *F* is called the set of accepting states.

We will only consider infinite runs of Büchi automata.

Runs and Languages



A Finite State System as an Automaton

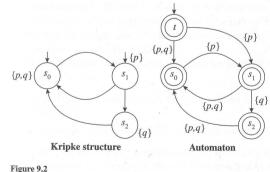
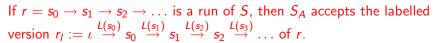
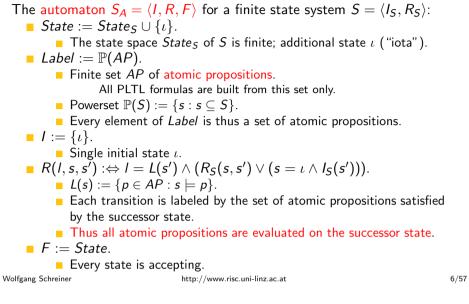


Figure 9.2 Transforming a Kripke structure into an automaton. Edmund Clarke et al: "Model Checking", 1999.



Wolfgang Schreiner

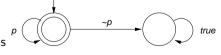
A Finite State System as an Automaton

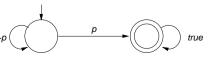


A System Property as an Automaton

Also an PLTL formula can be translated to a finite state automaton.

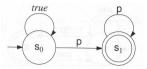
- We need the automaton P_A for a PLTL property P.
 - Requirement: $r \models P \Leftrightarrow P_A$ accepts r_I .
 - A run satisfies property *P* if and only if automaton *A_P* accepts the labeled version of the run.
- Example: □p.





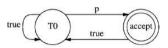
Further Examples

Example: $\Diamond \Box p$.



Gerard Holzmann: "The Spin Model Checker", 2004.

Example: $\Box \Diamond p$.



Gerard Holzmann: "The Model Checker Spin", 1997.

We will give later an algorithm to convert arbitrary PLTL formulas to automata.

Wolfgang	Schreiner
----------	-----------

http://www.risc.uni-linz.ac.at

9/57

The Next Steps

- Problem: $\mathcal{L}(S_A) \subseteq \mathcal{L}(P_A)$
 - Equivalent to: $\mathcal{L}(S_A) \cap \overline{\mathcal{L}(P_A)} = \emptyset$.
 - Complement $\overline{L} := \{ w : w \notin L \}.$
 - Equivalent to: $\mathcal{L}(S_A) \cap \mathcal{L}(\neg P_A) = \emptyset$.
 - $\square \overline{\mathcal{L}(A)} = \mathcal{L}(\neg A).$
- **Equivalent Problem**: $\mathcal{L}(S_A) \cap \mathcal{L}((\neg P)_A) = \emptyset$.
 - We will introduce the synchronized product automaton $A \otimes B$.
 - A transition of $A \otimes B$ represents a simultaneous transition of A and B.
 - Property: $\mathcal{L}(A) \cap \mathcal{L}(B) = \mathcal{L}(A \otimes B)$.

Final Problem: $\mathcal{L}(S_A \otimes (\neg P)_A) = \emptyset$.

- We have to check whether the language of this automaton is empty.
- We have to look for a word *w* accepted by this automaton.
 - If no such w exists, then $S \models P$.
 - If such a w = w(r₁) exists, then r is a counterexample, i.e. a run of S such that r ⊭ P.

State equivalence: L(s) = L(t).

System Properties

- Both states have the same labels.
- Both states satisfy the same atomic propositions in *AP*.
- **Run equivalence**: $w(r_l) = w(r'_l)$.
 - Both runs have the same sequences of labels.
 - Both runs satisfy the same PLTL formulas built over AP.
- Indistinguishability: $w(r_l) = w(r'_l) \Rightarrow (r \models P \Leftrightarrow r' \models R)$
 - PLTL formula P cannot distinguish between runs r and r' whose labeled versions read the same words.
- Consequence: $S \models P \Leftrightarrow \mathcal{L}(S_A) \subseteq \mathcal{L}(P_A)$.
 - Proof that, if every run of S satisfies P, then every word $w(r_l)$ in $\mathcal{L}(S_A)$ equals some word $w(r'_l)$ in $\mathcal{L}(P_A)$, and vice versa.
 - "Vice versa" direction relies on indistinguishability property.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

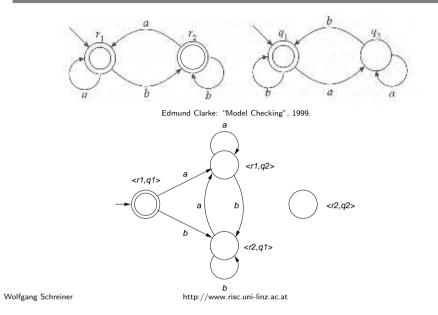
Synchronized Product of Two Automata

Given two finite automata $A = \langle I_A, R_A, State_A \rangle$ and $B = \langle I_B, R_B, F_B \rangle$.

- Synchronized product $A \otimes B = \langle I, R, F \rangle$.
 - State := $State_A \times State_B$.
 - Label := $Label_A = Label_B$.
 - $I := I_A \times I_B.$
 - $\blacksquare R(I, \langle s_A, s_B \rangle, \langle s'_A, s'_B \rangle) :\Leftrightarrow R_A(I, s_A, s'_A) \land R_B(I, s_B, s'_B).$
 - $F := State_A \times F_B$.

Special case where all states of automaton A are accepting.

Synchronized Product of Two Automata



Checking Emptiness

13/57

How to check whether $\mathcal{L}(A)$ is non-empty?

- Suppose $A = \langle I, R, F \rangle$ accepts a run r.
 - Then *r* contains infinitely many occurrences of some state in *F*.
 - Since *State* is finite, in some suffix r' every state occurs infinit. often.
 - **Thus every state in** r' is reachable from every other state in r'.
- C is a strongly connected component (SCC) of graph G if
 - \Box C is a subgraph of G,
 - every node in C is reachable from every other node in C along a path entirely contained in C, and
 - C is maximal (not a subgraph of any other SCC of G).
- Thus the states in r' are contained in an SCC C.
 - \bullet *C* is reachable from an initial state.
 - C contains an accepting state.
 - Conversely, *any* such SCC generates an accepting run.

$\mathcal{L}(A)$ is non-empty if and only if the reachability graph of A has an SCC that contains an accepting state.

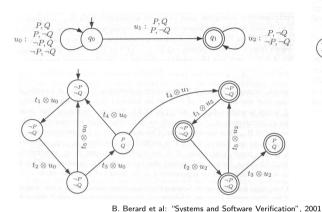
Wolfgang Schreiner

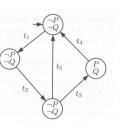
14/57

Example

Wolfgang Schreiner

Check whether $S \models \Box(P \Rightarrow \bigcirc \diamondsuit Q)$.





Checking Emptiness

Find in the reachability graph an SCC that contains an accepting state.

The product automaton accepts a run, thus the property does not hold.

http://www.risc.uni-linz.ac.at

- We have to find an accepting state with a cycle back to itself.
 - Any such state belongs to some SCC.
 - Any SCC with an accepting state has such a cycle.
 - Thus this is a sufficient and necessary condition.
- Any such a state *s* defines a counterexample run *r*.
 - $\bullet r = \iota \to \ldots \to s \to \ldots \to s \to \ldots \to s \to \ldots$
 - Finite prefix $\iota \to \ldots \to s$ from initial state ι to s.
 - Infinite repetition of cycle $s \rightarrow \ldots \rightarrow s$ from s to itself.

This is the core problem of PLTL model checking; it can be solved by a *depth-first search* algorithm.

Basic Structure of Depth-First Search

Visit all states of the reachability graph of an automaton $\langle \{\iota\}, R, F \rangle$.

```
global
   StateSpace V := {}
   Stack D := \langle \rangle
proc main()
   push(D, \iota)
   visit(1)
   pop(D)
end
```

proc visit(s) $V := V \cup \{s\}$ for $\langle I, s, s' \rangle \in R$ do if $s' \notin V$ push(D, s')visit(s') pop(D)end end end

State space V holds all states visited so far; stack D holds path from initial state to currently visited state.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

17/57

Depth-First Search for Acceptance Cycle


```
global
```

Stack $C := \langle \rangle$

```
proc main()
  push(D, \iota); r := search(\iota); pop(D)
end
```

function searchCycle(s) for $\langle I, s, s' \rangle \in R$ do if has(D, s') then print D; print C; print s' return true else if $\neg has(C, s')$ then push(C, s'): r := searchCycle(s')pop(C); if r then return true end end end return false end

```
boolean search(s)
  V := V \cup \{s\}
  for \langle I, s, s' \rangle \in R do
    if s' \notin V
        push(D, s')
        r := search(s')
        pop(D)
        if r then return true end
     end
  end
  if s \in F then
     r := searchCycle(s)
    if r then return true end
  end
  return false
end
```

Checking State Properties

Apply depth-first search to checking a state property (assertion).

global StateSpace $V := \{\}$ Stack $D := \langle \rangle$	fı
<pre>proc main() // r becomes true, iff // counterexample run is found push(D, l) r := search(l) pop(D) end</pre>	

function search(s) $V := V \cup \{s\}$ if $\neg check(s)$ then print D return true end for $\langle I, s, s' \rangle \in R$ do if $s' \notin V$ push(D, s')r := search(s')pop(D)if r then return true end end end return false end

Stack D can be used to print counterexample run.

Wolfgang Schreiner

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

18/57

Depth-First Search for Acceptance Cycle

- At each call of search(s),
 - *s* is a reachable state.
 - **D** describes a path from ι to s.
- search calls searchCycle(s)
 - on a reachable accepting state s
 - in order to find a cycle from s to itself.
- At each call of searchCycle(s).
 - \mathbf{s} is a state reachable from a reachable accepting state s_a .
 - **D** describes a path from ι to s_{a_1}
 - $D \rightarrow C$ describes a path from ι to s (via s_a).
- Thus we have found an accepting cycle $D \rightarrow C \rightarrow s'$, if
 - there is a transition $s \xrightarrow{l} s'$.
 - such that s' is contained in D.

If the algorithm returns "true", there exists a violating run; the converse follows from the exhaustiveness of the search http://www.risc.uni-linz.ac.at

Implementing the Search

■ The state space V,

- is implemented by a hash table for efficiently checking $s' \notin V$.
- Rather than using explicit stacks *D* and *C*,
 - each state node has two bits d and c,
 - d is set to denote that the state is in stack D,
 - *c* is set to denote that the state is in stack *C*.
- The counterexample is printed,
 - by searching, starting with *ι*, the unique sequence of reachable nodes where *d* is set until the accepting node *s_a* is found, and
 - by searching, starting with a successor of s_a, the unique sequence of reachable nodes where c is set until the cycle is detected.
- Furthermore, it is not necessary to reset the *c* bits, because
 - search first explores all states reachable by an accepting state s before trying to find a cycle from s; from this, one can show that
 - called with the first accepting node s that is reachable from itself, search2 will not encounter nodes with c bits set in previous searches.
 - With this improvement, every state is only visited twice.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

21/57

Adding Weak Scheduling Fairness

Assume that system is an asynchronous composition of k components.

- Weak scheduling fairness:
 - A run satisfies w.s.f., if it has infinitely many transitions from every component which is permanently ready to perform some transition.
- Implementation in a model checker.
 - Construct k + 2 copies $0, \ldots, k + 1$ of the state space.
 - Actually just k + 2 bits need to be added to every state.
 - Only copy 0 has the original acceptance states.
 - In copy 0, the destinations of all transitions from acceptance states are replaced by the corresponding states in copy 1.
 - In copy i, 1 ≤ i ≤ k, the destinations of all transitions of component i are replaced by the corresponding states in copy i + 1; a null transition is added from every state to the corresponding state in copy i + 1 which is enabled if no other transition of component i is enabled.
 - In copy k + 1, the transitions of all components are replaced by the corresponding states in copy 0.

Every accepted run has (possibly null) transitions from all components. Wolfgang Schreiner http://www.risc.uni-linz.ac.at 23/57

Complexity of the Search

The complexity of checking $S \models P$ is as follows.

- Let |P| denote the number of subformulas of P.
- $|State_{(\neg P)_A|} = O(2^{|P|}).$
- $|State_{A\otimes B}| = |State_A| \cdot |State_B|.$
- $|State_{S_A \otimes (\neg P)_A}| = O(|State_{S_A}| \cdot 2^{|P|})$
- The time complexity of *search* is linear in the size of *State*.
 - Actually, in the number of reachable states (typically much smaller).
 - Only true for the improved variant where the *c* bits are not reset.
 - Then every state is visited at most twice.

PLTL model checking is linear in the number of reachable states but exponential in the size of the formula.

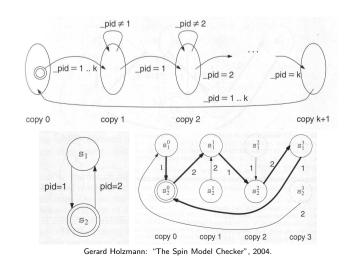
Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

22/57

24/57

Example



Runtime complexity of model checking is increased by a factor k + 2. Wolfgang Schreiner

Summary

- **Convert** system *S* to automaton S_A .
 - Atomic propositions of PLTL formula are evaluated on each state.
- Convert negation of PLTL formula P to automaton $(\neg P)_{\Delta}$.
 - How to do so, remains to be described.
- Construct synchronized product automaton $S_{\Delta} \otimes (\neg P)_{\Delta}$.
 - After that, formula labels are not needed any more.
- Find SCC in reachability-graph of product automaton.
 - A purely graph-theoretical problem that can be efficiently solved.
 - Time complexity is linear in the size of the state space of the system but exponential in the size of the formula to be checked.
 - Weak scheduling fairness with k components: runtime is increased by factor k + 2 (worst-case, "in practice just factor 2" [Holzmann]).

The basic approach immediately leads to *state space explosion*; further improvements are needed to make it practical.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

25/57

From a PLTL Formula to an Automaton

How to translate an PLTL formula P to an automaton P_A ?

- Automaton states: "atoms".
 - An atom is a particular set of subformulas of *P*.
 - May influence the value of the PLTL formula.
 - May be simultaneously satisfied by some state.
- **Construction**: P_A is the synchronous product of two automata.
 - A local automaton: checking the safety aspect of *P*.
 - Atoms describe system states.
 - Transitions describe the system transitions allowed by P.
 - An eventuality automaton: checking the liveness aspect of *P*.
 - Atoms describe goals that have to be satisfied by a system run.
 - Transitions describe the changes of these goals.

Today there are better approaches generating smaller automata, but the presented one is easier to understand.

1. Basic PLTL Model Checking

2. Translating PLTL Formulas to Automata

3. Optimized PLTL Model Checking

Wolfgang Schreiner

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

26/57

The Closure of a Formula

- We will only consider the operators $\neg, \land, \bigcirc, \mathbf{U}$.
 - $f_0 \vee f_1 \Leftrightarrow \neg (\neg f_0 \wedge \neg f_1), \ldots$
 - $\diamond f \Leftrightarrow \text{true } \mathbf{U} f$.
 - $\Box f \Leftrightarrow \neg \Diamond \neg f.$
- The closure $\mathcal{C}(P)$ of a PLTL formula P.
 - The smallest set satisfying the following conditions:
 - $P \in \mathcal{C}(P).$
 - If $\neg f_0 \in \mathcal{C}(P)$, then $f_0 \in \mathcal{C}(P)$.
 - If $f_0 \neq \neg f_1 \in \mathcal{C}(P)$, then $\neg f_0 \in \mathcal{C}(P)$.
 - If $f_0 \wedge f_1 \in \mathcal{C}(P)$, then $f_0, f_1 \in \mathcal{C}(P)$.
 - If $\bigcirc f_0 \in \mathcal{C}(P)$, then $f_0 \in \mathcal{C}(P)$.
 - If $f_0 \cup f_1 \in \mathcal{C}(P)$, then $f_0, f_1 \in \mathcal{C}(P)$.
- **Example:** $P :\Leftrightarrow (\neg p) \mathbf{U} q$.

$$\mathcal{C}(P) = \{P, \neg P, p, \neg p, q, \neg q\}.$$

The closure of P is the set of its subformulas and their negation.

http://www.risc.uni-linz.ac.at

The Atoms of a Formula

The closure $\mathcal{C}(P)$ gives the material to construct sets of formulas.

```
An atom K \subseteq \mathcal{C}(P) of P:
                                                         An atom K of P is a subset of the subformulas of P that do not have
                                                                            a propositional contradiction.
                                                                                                If f_0 \in \mathcal{C}(P), then f_0 \in K iff \neg f_0 \notin K.
                                                                                                If f_0 \wedge f_1 \in \mathcal{C}(P), then f_0 \wedge f_1 \in K iff f_0 \in K and f_1 \in K.
                                                         P_{\mathcal{K}} := \{K : K \text{ is an atom of } P\}.
                                                                                                The set of atoms of P.
                    Example: P :\Leftrightarrow (\neg p) \mathbf{U} a.
                                                                          P_{\mathcal{K}} = \{\{P, p, q\}, \{P, p, \neg q\}, \{P, \neg p, q\}, \{P, \neg p, \neg q\}, \{P, \gamma q\}, 
                                                                          \{\neg P, p, q\}, \{\neg P, p, \neg q\}, \{\neg P, \neg p, q\}, \{\neg P, \neg p, \neg q\}\}.
The atoms represents the states of the automaton to be constructed.
```

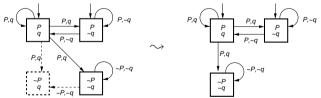
```
Wolfgang Schreiner
```

http://www.risc.uni-linz.ac.at

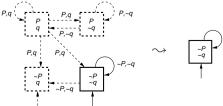
29/57

Example

- **Local automaton** P_1 where $P \Leftrightarrow \text{true } \bigcup q \ (\Leftrightarrow \Diamond q)$.
 - Accepts every run (no safety aspect).



- Local automaton $(\neg P)_i$ where $\neg P \Leftrightarrow \neg$ (true **U** *q*) ($\Leftrightarrow \Box \neg q$).
 - Accepts only runs where q does not occur.



• The local automaton $P_I = \langle I_I, R_I, F_I \rangle$ of P: • State := P_{κ} , Label := $\mathbb{P}(\mathcal{C}(P))$. States are atoms, labels are sets of formulas from the closure of P. $I_{I} := \{ a \in P_{K} : P \in a \}.$ The initial states are all atoms that contain *P*. $R_{I}(I, a, a') : \Leftrightarrow I = a \land$ $\forall \cap f \in \mathcal{C}(P)$: $\cap f \in a \Leftrightarrow f \in a' \land$ $\forall f_0 \mathbf{U} f_1 \in \mathcal{C}(P)$: $f_0 \mathbf{U} f_1 \in a \Leftrightarrow f_1 \in a \lor (f_0 \in a \land f_0 \mathbf{U} f_1 \in a').$ \cap f holds now iff f holds next. **•** f_0 **U** f_1 holds now iff f_1 holds now or f_0 **U** f_1 holds next. $F_I := P_{\kappa}$. All states are accepting; i.e. every accepted run passes some state infinitely often. The transition label describes the obligations of the predecessor state; the

local automaton checks all obligations except for the **U** formulas. Wolfgang Schreiner http://www.risc.uni-linz.ac.at 30/57

The Eventuality Automaton of a Formula

- The eventuality automaton $P_E = \langle I_E, R_E, F_E \rangle$ of *P*:
 - State := $\mathbb{P}(\{f_0 \mathbf{U} f_1 : f_0 \mathbf{U} f_1 \in P_K\})$; Label := $\mathbb{P}(\mathcal{C}(P))$. States are sets of U formulas: labels are formula sets.

 $I_{I} := \{\emptyset\}.$

- The initial state is the empty formula set.
- $R_L(I, a, a'):\Leftrightarrow$

$$(\mathbf{a} = \emptyset \land \forall f_0 \mathbf{U} f_1 \in \mathbf{I} : f_1 \in \mathbf{I} \lor f_0 \mathbf{U} f_1 \in \mathbf{a'}) \lor (\mathbf{a} \neq \emptyset \land \forall f_0 \mathbf{U} f_1 \in \mathbf{a} : f_1 \in \mathbf{I} \lor f_0 \mathbf{U} f_1 \in \mathbf{a'}).$$

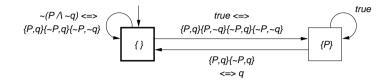
- From the initial state, the successor state has to fulfill all obligations of the label not satisfied by the label itself.
- From each other state, the successor state has to fulfill all obligations of the current state not satisfied by the label.
- $F_I := \{\emptyset\}.$
 - Only the initial state is accepting; i.e. every accepted run passes the initial state infinitely often.

The transition label describes the obligations of the predecessor state involving \mathbf{U} formulas; the eventuality automaton checks these obligations. Wolfgang Schreiner http://www.risc.uni-linz.ac.at 32/57

http://www.risc.uni-linz.ac.at

Example

Eventuality automaton P_E where $P \Leftrightarrow \text{true } \bigcup q \ (\Leftrightarrow \Diamond q)$ (also for $(\neg P)_F$ where $\neg P \Leftrightarrow \neg$ (true $\bigcup q) \Leftrightarrow \Box \neg q$).



- If the initial obligation is $\{P, \neg q\}$, the only possible transition is to the non-accepting state.
 - In all other cases, there is an accepting run through the initial state.
- If the non-accepting state eventually encounters q, the obligation is fulfilled and a transition back to the accepting state is possible.

Only runs are accepted where all obligations are infinitely often fulfilled.

(¬P)ı

http://www.risc.uni-linz.ac.at

33/57

35/57

Example

Product
$$(\neg P)_L \otimes (\neg P)_E$$
 where $\neg P \Leftrightarrow \neg$ (true **U** $q) \Leftrightarrow \Box \neg q$

$$(\neg P)_{L}:$$

$$(\neg P)_{E}:$$

$$(\neg P)_{E}:$$

$$(\neg P)_{E}:$$

$$(\neg P)_{E}:$$

$$(\neg P)_{E}:$$

$$(\neg P)_{L} \otimes (\neg P)_{E}:$$

$$(\neg P)_{L} \otimes (\neg P)_{E}:$$

$$(\neg P)_{L} \otimes (\neg P)_{E} \text{ is equivalent to } (\neg P)_{L} \text{ (no liveness aspect in } \neg P).$$
Wolfgang Schreiner

Synchronous Product of Both Automata

- Synchronous product $P_I \otimes P_F$.
 - As already defined; finally all non-atomic propositions are removed from the labels.

Intuitive understanding:

- $P_I \otimes P_F$ accepts only runs that both P_I and P_F accept.
- P₁ accepts a run with transition $a \xrightarrow{a} a'$, if the transition does not violate the safety aspect of P, even if a does not satisfy the **U** formulas with which it was labeled.
- P_F accepts a run with transition $b \xrightarrow{a} b'$, if either b satisfies the **U** formulas in label a, or if this obligation is passed on to a' and eventually a state is reached that fulfills the obligation.
- P₁ \otimes P_F thus accepts a run with transition $\langle a, b \rangle \xrightarrow{a} \langle a', b' \rangle$, if the transition does not violate the safety aspect of P and if either $\langle a, b \rangle$ satisfies the **U** formulas in a, or if this obligation is passed on to $\langle a', b' \rangle$ and eventually a state is reached that fulfills the obligation.

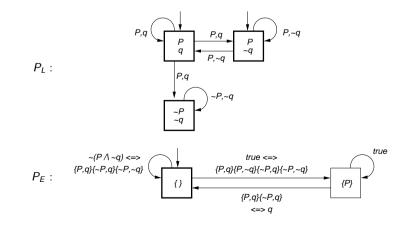
Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

34/57

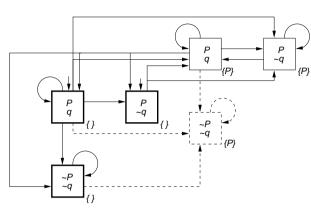
Example

Product $P_I \otimes P_F$ where $P \Leftrightarrow$ true **U** $q \Leftrightarrow \Diamond q$.



Example

Product $P_L \otimes P_E$ where $P \Leftrightarrow$ true **U** $q \Leftrightarrow \Diamond q$.



Can remove a state from which no acceptance state can be reached.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

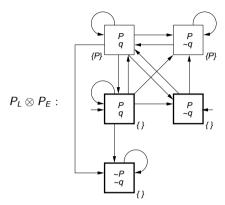
37/57

Example

Product $P_L \otimes P_E$ where $P \Leftrightarrow$ true **U** $q \Leftrightarrow \Diamond q$.

- In every accepting run, q must occur.
 - Accepting states have only incoming edges labeled with *q*.
 - **Exception:** $2 \rightarrow 2$, but 2 is not initial.
- All runs where *q* occurs are accepted.
 - **q** in first state: $0 \rightarrow \ldots$
 - q not in first state: $1 \rightarrow \ldots$
 - Occurrences of *q*:
 - $\ldots \to 0 \to \ldots \to 0 \to \ldots$
 - *q* finitely often:
 - $\ldots \rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow \ldots$
 - q eventually forever:
 - $\ldots \to 0 \to 0 \to 0 \to \ldots$

Product $P_L \otimes P_E$ where $P \Leftrightarrow$ true **U** $q \Leftrightarrow \Diamond q$.



Transitions are labeled with the atomic propositions of predecessor state.

Example

http://www.risc.uni-linz.ac.at

- 1. Basic PLTL Model Checking
- 2. Translating PLTL Formulas to Automata
- 3. Optimized PLTL Model Checking

On the Fly Model Checking

- For checking $\mathcal{L}(S_A \otimes (\neg P)_A) = \emptyset$, it is not necessary to construct the states of S_A in advance.
 - Only the property automaton $(\neg P)_A$ is constructed in advance.
 - This automaton has comparatively small state space.
 - The system automaton S_A is constructed on the fly.
 - Construction is guided by $(\neg P)_A$ while computing $S_A \otimes (\neg P)_A$.
 - Only that part of the reachability graph of S_A is expanded that is consistent with $(\neg P)_A$ (i.e. can lead to a counterexample run).
 - **Typically only a part of the state space of** S_A is investigated.
 - A smaller part, if a counterexample run is detected early.
 - A larger part, if no counterexample run is detected.

Unreachable system states and system states that are not along possible counterexample runs are never constructed.

```
Wolfgang Schreiner
```

http://www.risc.uni-linz.ac.at

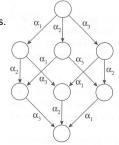
41/57

Partial Order Reduction

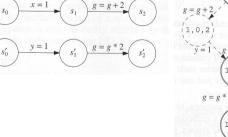
Core problem of model checking: state space explosion.

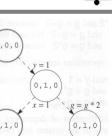
- Take asynchronous composition $S_0||S_1|| \dots ||S_{k-1}|$.
 - Take state s where one transition of each component is enabled.
 - Assume that the transition of one component does not disable the transitions of the other components and that no other transition becomes enabled before all three transitions have been performed.
 - **Take state** s' after execution of all three transitions.
 - There are k! paths leading from s to s'.
 - There are 2^k states involved in the transitions.

Sometimes it suffices to consider a single path with k + 1 states.



$ \begin{array}{c} R(s) := \{ \langle I, \langle s_0, s_1 \rangle, \langle s_0', s_1' \rangle \rangle : s_0' \in S \\ \hline \\ \ \ \ \ \ \ \ \ \ \ \ \ \$	br $\langle I, s, s' \rangle \in R(s)$ do). rs of state s_1 of $(\neg P)_A$. as been precomputed. rs of state s_0 of S_A . ing system transition relation to s_0 . $S'_0 \wedge s'_1 \in S'_1 \wedge s_1 \xrightarrow{I} s'_1 \wedge L(s'_0) \in I$. positions $L(s'_0)$ true in s'_0 . the label of any transition position automaton, s'_0 it is ignored. very transition $\langle s_0, s_1 \rangle \xrightarrow{I} \langle s'_0, s'_1 \rangle$ which of transition $s_1 \xrightarrow{I} s'_1$. with first suitable successor $\langle s'_0, s'_1 \rangle$	nere
before expanding the other candidates.		
Wolfgang Schreiner http://www.rise	Wolfgang Schreiner http://www.risc.uni-linz.ac.at	
Example	N N	
Check $(T1 T2) \models \Diamond g \ge 2.$	x = 1	2 8 10
T1: s_0 $x=1$ s_1 $g=g+2$ s_2	$g = g + 2, y = 1 \qquad (0, 1, 0) \qquad (0, 1, 0) \qquad (x = 1), y = g *$	2





Gerard Holzmann: "The Spin Model Checker", 1999

For checking $\Diamond g \ge 2$, it suffices to check only one ordering of the independent transitions x = 1 and y = 1 (not true for checking $\Box x \ge y$). Wolfgang Schreiner http://www.risc.uni-linz.ac.at 44/57

Edmund Clarke: "Model Checking", 1999. 43/57

Partial Order Reduction

Check $S \models P$.

boolean search(s) **boolean** search(s) for $\langle I, s, s' \rangle \in R(s)$ do

for $\langle I, s, s' \rangle \in ample_{\mathbb{P}}(s)$ do

• $ample_P(s) \subseteq R(s)$.

• The ample set $ample_{P}(s)$.

- The set of transitions from s to be considered for checking P.
- $\blacksquare R(s) := \{ \langle I, s, s' \rangle : I \in Label \land s' \in State \}.$
 - The set of all transitions from *s*.
- Optimization: $ample_{P}(s) \subseteq R(s)$.
 - Search space is reduced.

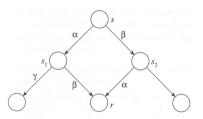
We will now investigate the calculation of the ample set.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

45/57

Open Problems



Edmund Clarke: "Model Checking", 1999

 $I(\alpha, \beta)$ is not sufficient for considering only one transition α or β .

- **Problem 1**: property *P* may distinguish between s_1 and s_2 .
 - $s \rightarrow s_1 \rightarrow r$ may be recognized as different from $s \rightarrow s_2 \rightarrow r$.
- **Problem 2**: states s_1 and s_2 may have successors in addition to r. If α is not considered, not every successor of s_1 may be explored.

Need some more checks to make sure that these problems do not occur.

Independence

When can two transitions of two components be executed in any order?

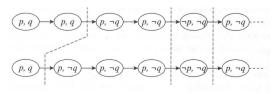
Independence relation $I \subseteq Trans \times Trans$. I is a relation between transitions. Trans := Label × State × State. \blacksquare $I(\alpha, \beta) \dots \alpha$ and β are independent. I satisfies the following conditions for every $s \in State$ and $\alpha, \beta \in Trans$: I is antireflexive and symmetric: $\neg I(\alpha, \alpha) \land (I(\alpha, \beta) \Rightarrow I(\beta, \alpha)).$ Edmund Clarke: "Model Checking", 1999. Enabledness: $\alpha, \beta \in R(s) \Rightarrow \alpha \in R(\beta(s))$ If α and β are enabled, then α is still enabled after executing β . • Commutativity: $\alpha, \beta \in R(s) \Rightarrow \alpha(\beta(s)) = \beta(\alpha(s))$ If α and β are enabled, then they may be executed in any order. Dependence relation $D(\alpha, \beta) :\Leftrightarrow \neg I(\alpha, \beta)$. • Two transitions are dependent, if they are not independent. $I(\alpha,\beta)$ is necessary for considering only one transition α or β from s. Wolfgang Schreiner http://www.risc.uni-linz.ac.at 46/57

Invisibility and Stuttering Equivalence

• A transition α is invisible:

Wolfgang Schreiner

- $\forall s, s' \in State : s' = \alpha(s) \Rightarrow L(s) = L(s').$
- Predecessor and successor state fulfill the same atomic propositions.
- Two runs r and s are stuttering equivalent:
 - **There are two infinite sequences** i_0, i_1, \ldots and j_0, j_1 of positions in r respectively s such that for all $k \in \mathbb{N}$
 - $L(r(i_k)) = L(r(i_k + 1)) = \ldots = L(r(i_{k+1} 1)) =$ $L(s(j_k)) = L(s(j_k+1)) = \ldots = L(s(j_{k+1}-1)).$
 - r and s have identical sequences of labels except for the number of occurrences of each label in subsequent positions.



Edmund Clarke: "Model Checking", 1999 http://www.risc.uni-linz.ac.at

Stuttering Invariance

- A PLTL formula *P* is invariant under stuttering:
 - For each pair of stuttering equivalent runs r and s: $r \models P$ iff $s \models P$.
 - P cannot distinguish among r and s.
- Every PLTL formula without \bigcirc is invariant under stuttering.
 - Only temporal operators \Box, \diamondsuit, U .
 - Only these operators are allowed in Spin as well.
 - Also converse of statement is true: every path property that does not distinguish between stuttering equivalent runs can be expressed by a PLTL formula without O.

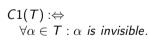
Partial order reduction only applies to checking formulas that are invariant under stuttering.

Wolfgang	Schreiner
----------	-----------

http://www.risc.uni-linz.ac.at

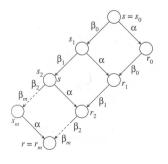
49/57

Condition 1: Invisibility



■ If $ample(s) \neq R(s)$, then every $\alpha \in ample(s)$ is invisible.

A reduced ample set has only invisible transitions; otherwise the discarded runs would not be stuttering equivalent to the considered run.



Edmund Clarke: "Model Checking", 1999.

Computation of the Ample Set

Check $(S_0||...||S_{k-1}) \models P$ where P is invariant under stuttering.

```
 \begin{array}{l} \text{function } ample_{P}(s): \\ \text{for } S_{i} \text{ with } R_{i}(s) \neq \emptyset \text{ do} \\ \text{ if } C1(R_{i}(s)) \wedge C2(s, R_{i}(s)) \wedge C3(s, S_{i}) \text{ then} \\ \text{ return } R_{i}(s) \\ \text{ end} \\ \text{ end} \\ \text{ return } R(s) \\ \text{ end} \\ \end{array}
```

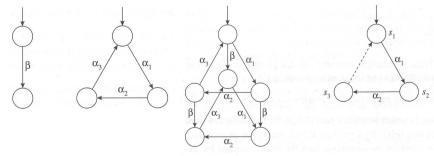
- **Transition** relation R_i of component *i*:
 - Total system transition relation $R := \bigcup_{0 \le i \le k} R_i$.
- Result of $ample_P(s)$:
 - Some component i's non-empty set of transitions from s that satisfies conditions C1, C2, C3 (if such a set exists).
 - All transitions from *s*, if no such set exists.

If successful, only transitions from component *i* are considered. Wolfgang Schreiner

50/57

Condition 2: Cycle Condition

- $C2(s, T) :\Leftrightarrow \forall \alpha \in T : \neg has(D, \alpha(s)).$
- If $ample(s) \neq R(s)$, then no $\alpha \in ample(s)$ may lead to a cycle.



C2 ensures that $ample_P(s_3) = \{\beta\}$; otherwise β would not appear at all in the reduced state graph.

Wolfgang Schreiner


```
C3(s, S_i) :\Leftrightarrow \\ \forall P_j \neq P_i : \\ \forall \beta \in R_j(s) : \\ (\forall \alpha \in R_i(s) : I(\beta, \alpha) \land \\ \forall \alpha \in current_i(s) \backslash R_i(s) : \neg enable(\beta, \alpha))
```

- $current_i(s) := \{ \alpha : \alpha \in R_i \land \exists s' : \alpha \in R(s') \land pc_i(s) = pc_i(s') \}.$
 - The set of transitions of S_i that are enabled in any state where S_i is at the same statement as in s (including those not enabled in s itself).
- enable (β, α) : $\Leftrightarrow \exists s : \alpha \notin R(s) \land \beta \in R(s) \land \alpha \in R(\beta(s))$
 - **Transition** β may enable transition α .

Every transition β that may be executed before any transition

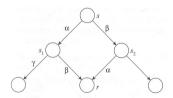
 $\alpha \in ample(s)$ is independent of α and cannot enable α ; thus it it safe to execute α first and β later.

```
Wolfgang Schreiner
```

http://www.risc.uni-linz.ac.at

53/57

Closing the Open Problems



Edmund Clarke: "Model Checking", 1999

- **Problem 1**: property *P* may distinguish between s_1 and s_2 .
 - Not possible because of Condition 1 (Invisibility) which makes
 - $s \rightarrow s_1 \rightarrow r$ and $s \rightarrow s_2 \rightarrow r$ stuttering equivalent.
- **Problem 2**: states s_1 and s_2 may have successors in addition to r.
 - Transition γ enabled in s₁ is independent of β (Condition 3) and, since enabled in s₁, thus also enabled in r.
 - Since β is invisible (Condition 1), sequences $s \xrightarrow{\alpha} s_1 \xrightarrow{\gamma} s'_1$ and
 - $s \xrightarrow{\beta} s_2 \xrightarrow{\alpha} r \xrightarrow{\gamma} r'$ are stuttering equivalent.

Interpretation

Which transitions depend on each other respectively enable each other?

• $D(\beta, \alpha)$ iff

- $\blacksquare\ \beta$ and α belong to the same process or
- \blacksquare β and α share a variable that is changed by β or $\alpha,$ or
- \blacksquare β and α are two send statements or two receive statements on the same channel.

• enable(β, α) iff

- β and α belong to the same process and α is a possible successor statement of β , or
- \blacksquare α is a statement that depends on the value of a shared variable and β is a statement that may change this variable, or
- \blacksquare β and α are send respectively receive statements on the same channel.

For checking Condition 3, only certain pairs of transitions are of interest.

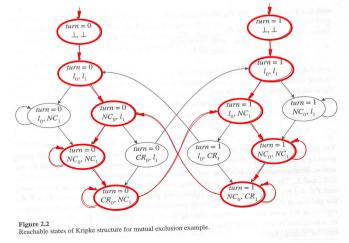
Wolfgang Schreiner

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

54/57

Example



Edmund Clarke et al: "Model Checking", 1999

System after partial order reduction.

Other Optimizations

Statement merging.

- Special case of partial order reduction where a sequence of transitions of same component is combined to a single transition.
- State compression.
 - Collapse compression: each state holds pointers to component states; thus component states can be shared among many system states.
 - Minimized automaton representation: represent state set V not by hash table but by finite state automaton that accepts a state (sequence of bits) s if and only if s ∈ V.
 - Hash compact: store in the hash table a hash value of the state (computed by a different hash function). Probabilistic approach: fails if two states are mapped to the same hash value.
 - Bitstate hashing: represent V by a bit table whose size is much larger than the expected number of states; each state is then only represented by a single bit. Probabilistic approach: fails if two states are hashed to the same position in the table.

http://www.risc.uni-linz.ac.at