
Formal Methods in Software Development

Exercise 1 (April 21)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

March 14, 2005

The exercise is to be submitted by April 21 (hard deadline)

1. either as a single paper report (cover page with full name and Matrikel-
nummer, pages stapled) which is handed out to me in class,

2. or as a single PDF file sent to me per email.

Questions can be asked per email or in the class on April 14 latest.

1 Array

Take the attached file Array.java and write a small test program Main in
the style of the program presented in class that allows to test the method
subarray(a,i) with arrays of various lengths.

Main should check the command line arguments such that they do not let the
program crash in any case.

Annotate the methods in Array and the auxiliary methods in Main with light-
weight specifications (method contracts) that as strongly as possible capture the
expected behavior of the methods. As a minimum, make sure that escjava2
does not complain on these files. Please note that Array contains a bug that
has to be fixed for this purpose.

Compile the test program with the runtime assertion checking tool jmlc and let
it run with jmlrac.

As a result of this exercise, deliver

1. the source of Main.java and of the JML annotated (buggy) Array.java;

2. the output of an execution of Main with the buggy class Array using
jmlrac such that an assertion exception demonstrates the bug;

3. the output of escjava2 on Main and the buggy Array;

1



4. the source of the JML annotated Array.java after fixing the bug;

5. the output of a correct execution of Main with jmlrac;

6. the output of of escjava2 on Main and the correct Array.

2 Integer Queue

An integer queue is an abstract datatype Q with operations n, e, d, i, f (nil,
enqueue, dequeue, isnil, first) obeying the following laws, for q, q′ ∈ Q, j, j′ ∈ Z:

• n 6= e(j, q).

• e(j, q) = e(j′, q′) ⇒ j = j′ ∧ q = q′.

• i(n) = true, i(e(j, q)) = false.

• d(e(j, n)) = n, d(e(j, e(j′, q))) = e(j, d(e(j′, q))).

• f(e(j, n)) = j, f(e(j, e(j′, q))) = f(e(j′, q)).

The attached file Queue.java contains a Java class that implements a queue.
Specify the private behavior of this class as strongly as possible; as a minimum
escjava2 shall not complain. Please note that Queue contains a bug that has
to be fixed for this purpose.

Write a program Main that tests the queue in a simple way.

Compile the test program with the runtime assertion checking tool jmlc and let
it run with jmlrac.

Then also specify the public behavior of the class in a JML specification file
Queue.jml using a model type QueueModel.

As a result of this exercise, deliver

1. the source of Main.java and of the JML annotated (buggy) Queue.java
specifiying the private behavior;

2. the output of an execution of Main with the buggy class Queue using
jmlrac such that an assertion exception demonstrates the bug;

3. the output of escjava2 on Main and the buggy Queue;

4. the source of the JML annotated Queue.java after fixing the bug;

5. the output of a correct execution of Main with jmlrac;

6. the output of of escjava2 on Main and the correct Queue.

7. the source of the corrected Queue.java, Queue.jml and QueueModel.java
specifying the public behavior and the output of escjava2 on these files.

2



Exercise Bonus (25%): implement (the methods in) QueueModel such that
runtime assertions can be generated from the public behavior specification. Use
for this purpose the JML class org.jmlspecs.models.ObjectSequence that
implements an unbounded sequence of objects (you can encapsulate int values
as Integer objects before putting them into such a sequence). Remove the
specification of the private behavior from Queue and demonstrate by the use
of jmlc and jmlrac that an assertion exception corresponding to the public
behavior specification is triggered by the buggy implementation of Queue.

3


