Hoare Calculus and Predicate Transformers

Wolfgang Schreiner

Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.uni-linz.ac.at

78]
W

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 1/43
Z4\
The Hoare Calculus 5 3
N4

Calculus for reasoning about imperative programs.
“Hoare triple”: {P} c {Q}
Logical propositions P and @, program command c.
The Hoare triple is itself a logical proposition.
The Hoare calculus gives rules for constructing true Hoare triples.
Partial correctness interpretation of {P} ¢ {Q}:
“If ¢ is executed in a state in which P holds, then it terminates
in a state in which @ holds unless it aborts or runs forever.”
Program does not produce wrong result.
But program also need not produce any result.
Abortion and non-termination are not ruled out.
Total correctness interpretation of {P} ¢ {Q}:
“If ¢ is executed in a state in which P holds, then it terminates
in a state in which @ holds.

Program produces the correct result.

We will use the partial correctness interpretation for the moment.
Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 3/43

7\

.E.{.

1. The Hoare Calculus for Non-Loop Programs

2. Predicate Transformers

3. Partial Correctness of Loop Programs

4. Total Correctness of Loop Programs

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 2/43

/Ny

JML and Hoare Triples .%.{.

JML version of a Hoare triple.

//@ assume P;
c;
//@ assert Q;

Treated by ESC/Java2 in much the same way as {P} ¢ {Q}.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at

4/43

N
Method Contracts as Hoare Triples '% {'

Neglect exceptions and frame conditions for the moment.
T y; // global variable used by p

//@ requires P(x,y);
//@ ensures Q(x,\old(y),y, \result));
static T p(T z)
{ Tz
[¢H
return z;

}
{P(x,y) Noldx = x A oldy = y} ¢ {Q(oldx, oldy,y,z)}

Precondition P may refer to parameter/global variable x and y.
Both x and y may be changed.

Postcondition Q may refer to (the old value of) x, both the old and
the new value of y, and the result value z.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 5/43
Z4Y
Special Commands K *
N4

Commands modeling “emptiness” and abortion.

{P} skip {P} {true} abort {false}

The skip command does not change the state; if P holds before its
execution, then P thus holds afterwards as well.

The abort command aborts execution and thus trivially satisfies
partial correctness.

Axiom implies { P} abort {Q} for arbitrary P, Q.

Useful commands for reasoning and program transformations.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 7/43

7\

General Rules .E l(.
P=Q P=P {P}c{Q} Q=Q
{P} {Q} {P} c{Q}
A Ay

Logical derivation:
ogical derivation 5

Forward: If we have shown A; and A, then we have also shown B.
Backward: To show B, it suffices to show A; and As.
Interpretation of above sentences:

To show that, if P holds in a state, then @ holds in the same state
(no command is executed), it suffices to show P implies Q.

Hoare triples are ultimately reduced to classical logic.

To show that, if P holds, then @ holds after executing c, it suffices to
show this for a P’ weaker than P and a Q' stronger than Q.

Precondition may be weakened, postcondition may be strengthened.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 6/43
Z4Y
Scalar Assignments K *
N4

{Qle/x]} x:=e{Q}

Syntax
Variable x, expression e.
Qle/x] ... Q where every free occurrence of x is replaced by e.

Interpretation

To make sure that @ holds for x after the assignment of e to x, it
suffices to make sure that Q holds for e before the assignment.

Partial correctness
Evaluation of e may abort.

{x+3<5} x:=x+4+3 {x<5}
{x<2} x=x+3 {x<5}

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 8/43

7\

Array Assignments . 3
W
{Qlali — e]/a]} a[i] := e {Q}
An array is modelled as a function a: [— V
Index set /, value set V.
a[i] = e ...a holds at index i the value e.
Updated array a[i — €]
Array that is constructed from a by mapping index i to value e.
Axioms (foralla: | — V,iel,jel,ee V)
i=j=ali—ell]=e
i # = ali — e]lj] = alj
{ali —X[1] > 0} ali]:=x {a[1] >0}
{i=1=x>0A(i#1=a[l]]>0)} a[i]:=x {a[l] >0}
Index violations and pointer semantics of arrays not yet considered.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 9/43
/Ny
Conditionals X 3
N4

{PAb} i {Q} {PA—b} e {Q)
{P} if b then ¢; else c; {Q}

{PAb} c{Q} (PAN-b)=Q
{P} if b then c {Q}

Interpretation
To show that, if P holds before the execution of the conditional, then
Q@ holds afterwards,
it suffices to show that the same is true for each conditional branch,
under the additional assumption that this branch is executed.

{x#0Ax>0}y:=x{y >0} {x#0Ax 20} y:=—x{y>0}
{x#0}if x >0then y :=xelse y .= —x {y > 0}

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 11/43

N
Command Sequences e

{P} C1 {Rl} Ri=R, {RQ} C {Q}
{P} aic {Q}

Interpretation

To show that, if P holds before the execution of ¢;; ¢, then @ holds
afterwards, it suffices to show for some R; and R> with Ry = R» that

if P holds before ¢, that R; holds afterwards, and that
if R>» holds before ¢, then @ holds afterwards.

Problem: find suitable Ry and R»
Easy in many cases (see later).

{x+y—-1>0ty:=y—1{x+y>0} {x+y >0} x:=x+y {x>0}
{x+y—-1>0ty=y—Lx:=x+y {x>0}

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 10/43

N
1" 4

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers

3. Partial Correctness of Loop Programs

4. Total Correctness of Loop Programs

5. Abortion

6. Procedures

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 12/43

) ZaY
Backward Reasoning 0% (.

Implication of rule for command sequences and rule for assignments:

{P} c {Qle/x]}
{P} c;x:=e{Q}

Interpretation
If the last command of a sequence is an assignment, we can remove
the assignment from the proof obligation.
By multiple application, assignment sequences can be removed from
the back to the front.

{P} {P} {P} {P} P=x=4

x 1= x+1; x 1= x+1; x = x+1; {x+1=5}

y 1= 2%x; y = 2%x; {x +2x = 15} (& x=4)

z 1= x+y {x+y=15} (& 3x=15)

{z =15} (& x=5)

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 13/43
/Ny
Weakest Preconditions X 3

N4

The weakest precondition of each program construct.

wp(skip, Q) & @

wp(abort, Q) < true

wp(x = e, Q) & Qle/x]

wp(c1; &2, Q) < wp(cr, wp(ez, Q))

wp(if b then ¢ else ¢, Q) < (b= wp(c1, Q)) A (—b = wp(c2, Q))
wp(if b then ¢, Q) < (b= wp(c, Q)) A (-b= Q)

Alternative formulation of a program calculus.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 15/43

o ZN
Weakest Preconditions e

A calculus for “backward reasoning”.

Predicate transformer wp

Function “wp" that takes a command ¢ and a postcondition @ and
returns a precondition.
Read wp(c, Q) as “the weakest precondition of ¢ w.r.t. Q".

wp(c, Q) is a precondition for ¢ that ensures Q as a postcondition.
Must satisfy {wp(c, Q)} ¢ {Q}.
wp(c, Q) is the weakest such precondition.
Take any P such that {P} ¢ {Q}.
Then P = wp(P, Q).
Consequence: {P} ¢ {Q} iff (P = wp(c, Q))
We want to prove {P} ¢ {Q}.
We may prove P = wp(c, Q) instead.

Verification is reduced to the calculation of weakest preconditions.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 14/43
Z@N
Forward Reasoning X *
W

Sometimes, we want to derive a postcondition from a given precondition.
{P} x:=e{3x0: P[xo/x] A x = e[xo/x]|}

Forward Reasoning
What is the maximum we know about the post-state of an
assignment x := e, if the pre-state satisfies P?
We know that P holds for some value xq (the value of x in the
pre-state) and that x equals e[xo/x].

{x>0Ay=a}
x:=x+1
{3 % >0Ay=aAx=xy+1}
((BFx:x>0Ax=x+1)Ay=2a)
(&x>0Any=2a)

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 16/43

7\

Strongest Postcondition W

A calculus for forward reasoning.

Predicate transformer sp
Function “sp” that takes a precondition P and a command ¢ and
returns a postcondition.
Read sp(P, ¢) as “the strongest postcondition of ¢ w.r.t. P".

sp(P, ¢) is a postcondition for ¢ that is ensured by precondition P.

Must satisfy {P} ¢ {sp(P, c)}.

sp(P, c) is the strongest such postcondition.
Take any P, Q such that {P} ¢ {Q}.
Then sp(P,c) = Q.

Consequence: {P} ¢ {Q} iff (sp(P,c) = Q).
We want to prove {P} ¢ {Q}.
We may prove sp(P, c) = @ instead.

Verification is reduced to the calculation of strongest postconditions.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

17/43

78
W

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers

3. Partial Correctness of Loop Programs

4. Total Correctness of Loop Programs

5. Abortion

6. Procedures

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at

19/43

Wolfgang Schreiner

. 4N
Strongest Postconditions 2

The strongest postcondition of each program construct.

sp(P, skip) < P

sp(P,abort) < false

sp(P,x :=€) < Ixo : Plxo/x] A x = e[x0/x]

sp(P, c1; &) < sp(sp(P, c1), ¢2)

sp(P,if b then c; else ¢;) < (b= sp(P,c1)) A (—b = sp(P,c))
sp(P,if b then c¢) < (b= sp(P,c)) A (—-b= P)

The use of predicate transformers is an alternative/supplement to the
Hoare calculus; this view is due to Dijkstra.

78
W

The Hoare Calculus and Loops

Wolfgang Schreiner

P=1 {INb}c{l} (IN-b)=Q

{true} loop {false} {P} while b do ¢ {Q}

Interpretation:
The loop command does not terminate and thus trivially satisfies
partial correctness.
Axiom implies {P} loop {Q} for arbitrary P, Q.
To show that, if before the execution of a while-loop the property P
holds, after its termination the property Q holds, it suffices to show
for some property | (the loop invariant) that
I holds before the loop is executed (i.e. that P implies /),
if | holds when the loop body is entered (i.e. if also b holds), that
after the execution of the loop body / still holds,
when the loop terminates (i.e. if b does not hold), / implies Q.
Problem: find appropriate loop invariant /.

Strongest relationship between all variables modified in loop body.

http://www.risc.uni-linz.ac.at 18/43

http:/ /www.risc.uni-linz.ac.at 20/43

7\

Example e
W
I (n>0=1<i<n+1)As=3Y1j
(i=1As=0)=1
{INi<0}s:=s+ii=i+1{l}
(INign)=s=3",]
{i=1As=0}whilei<ndo(s:=s+ii:=i+1){s=>7",j}
The invariant captures the “essence” of a loop; only by giving its
invariant, a true understanding of a loop is demonstrated.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 21/43
/Ny
Weakest Liberal Preconditions for Loops .E {'
L}

wp(loop, Q) < true
wp(while bdo ¢, Q) & Vie N: L;(Q)

Lo(Q) :& true
L;+1(Q) = (_'b = Q) A (b = Wp(C, LI(Q)))

Interpretation
Weakest precondition that ensures that loops stops in a state
satisfying @, unless it aborts or runs forever.

Infinite sequence of predicates L;(Q):
Weakest precondition that ensures that loops stops after less than /
iterations in a state satisfying @, unless it aborts or runs forever.

Alternative view: L;(Q) < wp(ifi, Q)
ifg := loop
if,'+1 = if b then (C; If,)

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 23/43

Practical Aspects * 2
W
We want to verify the following program:
{P} c1;while bdo c;c; {Q}
Assume ¢; and ¢, do not contain loop commands.
It suffices to prove
{sp(P, c1)} while b do ¢ {wp(cz, Q)}
Verification of loops is the core of most program verifications.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 22/43
/Ny
Example g
W

wp(while i < ndo i:=i+1,Q)

Lo(Q) < true

L(Q) e (idn=Q)A(i <n=wp(i:=i+1,true))
S (Fg€n=Q)A(i < n=true)
= (i¢n= Q)
LQ<e(igtn=QAN(i<n=>wp(i:=i+1,i£n=Q))
< (iL£n=Q)A

(i<n=((+1<£n= Qi +1/i))
L) (igdn=QAN(I<n=>wp(i:=i+1,
(ign=Q)AN(i<n=(i+1«n= Q[i+1/i]))))
< (ig£n=Q)A
(i<n=((i+1¢&£n=Q[i+1/i])A
(i+l<n=(i+2<n= Qi +2/i))))

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 24/43

7\

Weakest Liberal Preconditions for Loops 2

Sequence L;(Q) is monotonically increasing in strength:
VieN: Lin(Q) = Li(Q).

The weakest precondition is the “lowest upper bound”:
wp(while b do ¢, Q) = Vi e N: L;(Q).
VP :(P=VieN:Li(Q)) = (P= wp(while b do c, Q)).

We can only compute weaker approximation L;(Q).
wp(while b do ¢, Q) = Li(Q).

We want to prove {P} while b do ¢ {Q}.

This is equivalent to proving P = wp(while b do ¢, Q).
Thus P = L;j(Q) must hold as well.

If we can prove =(P = L;j(Q)), ...
{P} while b do ¢ {Q} does not hold.
If we fail, we may try the easier proof =(P = L;11(Q)).

Falsification is possible by use of approximation L;, but verification is not.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 25/43
ZaY
Total Correctness of Loops . *
W

Hoare rules for loop and while are replaced as follows:

P=1IANb=1t>0
{INbAt=N}c{INt<N} (IAN=b)=Q
{P} while b do ¢ {Q}

{false} loop {false}

New interpretation of {P} ¢ {Q}.
If execution of ¢ starts in a state where P holds, then execution
terminates in a state where @ holds, unless it aborts.
Non-termination is ruled out, abortion not (yet).
The loop command thus does not satisfy total correctness.
Termination term t.
Denotes a natural number before and after every loop iteration.
If t = N before an iteration, then t < N after the iteration.
Consequently, if term denotes zero, loop must terminate.

Instead of the natural numbers, any well-founded ordering may be used

for the domain of t.
Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 27/43

7\
.E.{.

1. The Hoare Calculus for Non-Loop Programs

2. Predicate Transformers

3. Partial Correctness of Loop Programs

4. Total Correctness of Loop Programs

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 26/43

/Ny

Example '%.u/'

I (n>0=1<i<n+1)As= 1]
(i=1As=0)=1 IANi<n=n—i4+1>0
{INi<OAn—i+1=N}s:=s+ii=i+1{IAn—i+1<N}
(//\ign):>5:ZJ'.’=1j

{i=1As=0}whilei<ndo(s:=s—+ii:=i+1) {S:Z}’le}

In practice, termination is easy to show (compared to partial correctness).

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 28/43

. 4N
Weakest Preconditions for Loops .E {'

wp(loop, Q) < false
wp(while bdo ¢, Q) < Ji e N: L;(Q)

Lo(Q) < false
L;+1(Q) = (_'b = Q) A (b = Wp(C, LI(Q)))

New interpretation
Weakest precondition that ensures that the loop terminates in a state
in which @ holds, unless it aborts.
New interpretation of L;(Q)
Weakest precondition that ensures that the loop terminates after less
than / iterations in a state in which @ holds, unless it aborts.
Preserves property: {P} ¢ {Q} iff (P = wp(c, Q))
Now for total correctness interpretation of Hoare calculus.
Preserves alternative view: L;(Q) < wp(if;, Q)
ifo := loop
ifi+1 ;= if b then (C; If,)

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 29/43

- /Ny
Weakest Preconditions for Loops .E l(.

Sequence L;(Q) is now monotonically decreasing in strength:
VieN: L,(Q) = L,'Jr]_(Q).
The weakest precondition is the “greatest lower bound”:
(Vi € N: Li(Q)) = wp(while b do c, Q).
VP : ((Vi e N: L;(Q)) = P) = (wp(while b do c, Q) = P).
We can only compute a stronger approximation L;(Q).
Li(Q) = wp(while b do c, Q).
We want to prove {P} ¢ {Q}.

It suffices to prove P = wp(while b do c, Q).
It thus also suffices to prove P = L;(Q).
If proof fails, we may try the easier proof P = L;11(Q)

Verifications are typically not successful with finite approximation of
weakest precondition.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 31/43

.MEO
Example W
wp(while i < ndoi:=i+1,Q)
Lo(Q) :& false
L(Q) e (i £ n= QAG<n= wpli=i+1Le(Q))
S (gn=Q)A(i<n= false)
SidnAQ
L)< (ign=QAN(i<n= wp(i:=i+1L1(Q)))
S (ign=Q)A
i<n=(+1£nAQ[i+1/i]))
L3(Q) & (i £ n= QAG <n= wp(i ==i+1,La(Q)))
S(ign=>Q)A
(i<n= ((i+1<£n= Qi+ 1/iA
(i+1l<n=((+2<£nAQ[i+2/))))
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 30/43
@,
NP

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers

3. Partial Correctness of Loop Programs

4. Total Correctness of Loop Programs

5. Abortion

6. Procedures

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 32/43

.)
Abortion .E l(.

New rules to prevent abortion.

{false} abort {true}
{Qle/x] A D(e)} x = e {Q}
{Qla[i — e]/a] A D(e) N0 < i < length(a)} a[i] .= e {Q}

New interpretation of {P} ¢ {Q}.
If execution of ¢ starts in a state, in which property P holds, then it
does not abort and eventually terminates in a state in which @ holds.

Sources of abortion.
Division by zero.
Index out of bounds exception.

D(e) makes sure that every subexpression of e is well defined.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 33/43
Z4Y
Abortion 5 3
N4

Slight modification of existing rules.

{PAbAD(b)} c1 {Q} {PA-bAD(b)} 2 {Q}
{P} if b then ¢ else c; {Q}

{PAbAD(b)} c{Q} (PAN-bAD(b)=Q
{P} if b then ¢ {Q}

P=1 1= (T eNAD(b))
{INBAT =t} c{INT <t} (IN=b)=Q
{P} while b do ¢ {Q}

Expressions must be defined in any context.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 35/43

_ _ 7\
Definedness of Expressions e

D(0) :& true.
D(1) :& true.
D(x) :& true.
D(a[f]) =& D(i) A0 < i < length(a).
D(e1 + &) & D(e1) A D(e&2).

D(e1 * &) :& D(e1) A D(e2).

D(ei/e) = D(e1) A D(e2) AN ex # 0.
D(true) :< true.
D(false) :& true.
D(—=b) :& D(b).
D(bi A by) :& D
D(b1 Vv b2) = D
D(ei < &):= D
D(e1 < 62) = D
D(e1 > &):= D
D(e1 > &):= D

b1) A D(bz).
b1) A D(bz).
e1) A D(e).
81) A D(eg)
e1) A D(e)
e1) A D(e).

—_—e== =N~

Assumes that expressions have already been type-checked.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 34/43

. 7\
Abortion .E W

Similar modifications of weakest preconditions.

wp(abort, Q) < false
wp(x = e, Q) < Q[e/x] A D(e)
wp(if b then ¢ else ¢, Q) &
D(b) A (b= wp(c1, Q) A (=b = wp(cz, Q))
wp(if b then ¢, Q) < D(b) A (b= wp(c, Q)) A (b= Q)
wp(while b do ¢, Q) < Ji € N: Li(Q)

Lo(Q) < false
Li1(Q) i D(b) A (=b = Q) A (b= wp(c, Li(Q)))

wp(c, Q@) now makes sure that the execution of ¢ does not abort but
eventually terminates in a state in which @ holds.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 36/43

7\

N2
L}
1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers
3. Partial Correctness of Loop Programs
4. Total Correctness of Loop Programs
5. Abortion
6. Procedures
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 37/43

ZaY
Procedure Calls .E {'

First let us give an alternative (equivalent) version of the assignment rule.

Original:
{D(e) A Qle/x]}

X =e
{Q}
Alternative:
{D(e) N¥X : X' = e= Q[X'/x]}
X =e

{Q}

The new value of x is given name x’ in the precondition.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 39/43

e 7\
Procedure Specifications e

global F;
requires Pre;
ensures Post;

p(i,t,0) { ¢}

Specification of procedure p(i, t, 0).
Input parameter i, transient parameter t, output parameter o.
A call has form p(e, x,y) for expression e and variables x and y.
Set of global variables (“frame”) F.

Those global variables that p may read/write (in addition to i, t, 0).
Let f denote all variables in F; let g denote all variables not in F.

Precondition Pre (may refer to i, t, f).
Postcondition Post (may refer to i, t, to, f, fy, 0).

Proof obligation
{PreNig=iNty=tAfy =T} c{Post[io/i]}

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 38/43

ZaY
Procedure Calls .E {'

From this, we can derive a rule for the correctness of procedure calls.

{D(e) A Pre[e/i,x/t] A
Vx',y', ' : Postle/i,x/ty, x'[t,y'Jo,f /T, ' [f] = Q[x'/x,y]y, ' /f]}
p(?g}iy)

Pre[e/i,x/t] refers to the values of the actual arguments e and x
(rather than to the formal parameters i and t).

x',y', f’ denote the values of the vars x, y, and f after the call.
Post]. . .] refers to the argument values before and after the call.
Q[x'/x,y'/y, f'/f] refers to the argument values after the call.

Modular reasoning: rule only relies on the specification of p, not on its
implementation.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 40/43

ZA\

Corresponding Predicate Transformers .E l(.

wp(p(e, x,y), Q) <
D(e) A Pre[e/i,x/t] A
X'y f
Post[e/i,x/to,x"/t,y' o, f/fo, ' /f] = Q[x'/x,y']y, f'/f]
sp(P, p(e, x,y)) &
3x0, yo, fo :

Plxo/x,y0/y, T /f] A
POSt[e[XO/X))/O/)/) fO/f]/i’XO/thX/t))//o]

Explicit naming of old/new values required.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 41/43
Z4\
Not Yet Covered e
N4

Primitive data types.
int values are actually finite precision integers.
More data and control structures.

switch, do-while (easy); continue, break, return (more complicated).
Records can be handled similar to arrays.

Recursion.

Procedures may not terminate due to recursive calls.
Exceptions and Exception Handling.

Short discussion in the context of ESC/Java2 later.
Pointers and Objects.

Here reasoning gets complicated.

The more features are covered, the more complicated reasoning becomes.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 43/43

Procedure Calls Example

7\
A4

Procedure specification:
global f
requires f > 0A />0
ensuresfo=f-i+oN0<o<i
dividesF (i, 0)
Procedure call:
{f>0Af=NAb>0}
dividesF(b+1,y)
{f-(b+1)<N<(f+1)-(b+1)}
To be ultimately proved:
F>0Nf=NAbL>0=
D(b+1)Af>0Ab+1>0A
vy, f'
f=f -(b+1)+y ANO<y <b+1=
fro(b+1)<N<(f+1)-(b+1)

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

42/43

	The Hoare Calculus for Non-Loop Programs
	Predicate Transformers
	Partial Correctness of Loop Programs
	Total Correctness of Loop Programs
	Abortion
	Procedures

