
Formal Methods in Software Development

Exercise 4 (July 5)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

May 23, 2007

The result is to be submitted to me by July 5 (hard deadline) either as an
email with a single PDF file as attachment or as a paper sent to me (“Wolfgang
Schreiner, RISC”) by university mail (you may use any university mail box).

1 Distributed Termination Detection

Consider the following problem:

Implement a distributed termination detection algorithm for a net-
work of N nodes. Each node can be either in active or in passive
state. Only an active node can send messages to other nodes; each
message sent is received after some period of time later. After hav-
ing received a message, a passive node becomes active; the receipt of
a message is the only mechanism that triggers for a passive node its
transition to activity. For each node, the transition from the active
to the passive state may occur ”spontaneously”. The state in which
all nodes are passive and no messages are on their way is stable: the
distributed computation is said to have terminated. The purpose of
the algorithm is to enable one of the nodes, say node 0, to detect that
this stable state has been reached.

The following algorithm (by Dijkstra and Safra) solves the problem:

• Every node maintains a counter c. Sending a message increases c by one;
the receipt of a message decreases c by one. The sum of all counters thus
equals the number of messages pending in the network.

• When node 0 initiates a detection probe, it sends a token with a value 0
to node N − 1. Every node i keeps the token until it becomes passive; it
then forwards the token to node i− 1 increasing the token value by c.

• Every node and also the token has a color (initially all white). When a
node receives a message, the node turns black. When a node forwards the
token, the node turns white. If a black machine forwards the token, the
token turns black; otherwise the token keeps its color.

1



• When node 0 receives the token again, it can conclude termination, if

– node 0 is passive and white,
– the token is white, and
– the sum of the token value and c is 0.

(and also inform the other nodes). Otherwise, it may start a new probe.

The core class of a Java program simulating this algorithm is attached.

Your tasks are the following:

1. Develop a formal model of a system of N nodes implementing this algo-
rithm (in the style of the client/server system shown in class).
Hint: each node may e.g. operate on variables active, send , receive, term,
c, color , probing , tsend , treceive such that

• active signals whether the node is active,
• send(i) represents the output buffer from this node to node i,
• receive(i) is the input buffer from node i to this node,
• term is used by node 0 to signal the termination of the system,
• c is the counter value of the node,
• color is the color of the node,
• probing is set by node 0 when it starts termination detection,
• tsend represents the link for sending a token,
• treceive represents the link for receiving a token.

As shown in class, the system is defined by the set of external transitions
and the composition of the system components; each component is de-
scribed by it state space, internal transitions, initial state condition, and
transition relation. Please note that also the communication channels be-
tween the nodes have to be modelled as components (the channels for the
normal messages are different from the channels for passing the token).

2. Develop a Promela model of a system of 5 nodes implementing this al-
gorithm, formulate in LTL the correctness property of the algorithm (“if
node 0 concludes termination, the system is indeed terminated”) in a suit-
able way and model-check the property. (If the model checking takes too
long with 5 nodes, you may reduce the system to 4 nodes).

The result of this exercise consists of a PDF file or paper containing

1. the formal model,

2. the listings of the Promela model and of the LTL formula (including the
definitions of the atomic predicates),

3. a screen shot of a (limited) simulation of the model and the output of
model checking the LTL formula.

If Spin claims that the property is violated, investigate the generated counterex-
ample in order to track down the bug in your model/formula; if you can’t find
the error, explain what you think has gone wrong.

2



class Prog extends Program

{

public int i; // node number

public boolean active = true; // flag indicating the state of the process

public int c = 0; // messages sent - messages received

public int color = Token.WHITE; // color of the node

public Token token = null; // token held by node

public boolean probing = false; // flag representing state probing

public boolean term = false; // boolean flag indicating termination

// called for the initialization of the program

public Prog(int process)

{

i = process;

}

private final int PSEND = 3; // inverse probability for sending message

private final int PPASSIVE = 5; // inverse probability for becoming passive

private final int PSTART = 3; // inverse probability for starting probe

// called for the execution of the program

public void main()

{

// signal/message channels

InChannelSet sigIn = new InChannelSet();

InChannelSet msgIn = new InChannelSet();

OutChannelSet sigOut = new OutChannelSet();

OutChannelSet msgOut = new OutChannelSet();

sigIn.addChannel(in(0));

int is = in().getSize();

for (int i = 1; i < is; i++)

msgIn.addChannel(in(i));

sigOut.addChannel(out(0));

int os = out().getSize();

for (int i = 1; i < os; i++)

msgOut.addChannel(out(i));

while (!term)

{

// an active node may become passive at its will

if (active && random(PPASSIVE) == 0)

{

active = false;

continue;

}

// an active node may send a message at its will

if (active && random(PSEND) == 0)

{

int j = random(Main.PNUM-1); // select channel and send msg

msgOut.getChannel(j).send(new Msg(random(100)));

c = c+1; // decrease message counter

continue;

}

// node 0 may start a probe at its will

if (i == 0 && !probing && random(PSTART) == 0)

{

probing = true;

3



color = Token.WHITE;

sigOut.getChannel(0).send(new Token(0, Token.WHITE));

continue;

}

// any node may receive a message

if (msgIn.select(1) != -1)

{

int j = msgIn.select(); // get channel

Msg msg = (Msg)msgIn.getChannel(j).receive();

c = c-1; // decrease message counter

active = true; // switch active again

color = Token.BLACK; // switch color to black

continue;

}

// process 0 may receive token again

if (i == 0 && sigIn.select(1) != -1)

{

token = (Token)sigIn.getChannel(0).receive();

term = token.color == Token.TERM;

if (term) continue;

if (!active && c+token.value == 0 &&

color == Token.WHITE && token.color == Token.WHITE)

sigOut.getChannel(0).send(new Token(0, Token.TERM));

else

probing = false;

token = null;

continue;

}

// inactive process may forward a token

if (i != 0 && !active && sigIn.select(1) != -1)

{

token = (Token)sigIn.getChannel(0).receive();

if (color == Token.BLACK)

sigOut.getChannel(0).send(new Token(c+token.value,

Token.BLACK));

else

sigOut.getChannel(0).send(new Token(c+token.value,

token.color));

term = token.color == Token.TERM;

if (term) continue;

color = Token.WHITE;

token = null;

continue;

}

}

}

// deliver random number 0 <= r < n

Random rand = new Random();

public int random(int n)

{

return (Math.abs(rand.nextInt()) % n);

}

}

4


