The Temporal Logic of Actions |

The Temporal Logic of Actions |

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

The Temporal Logic of Actions |

Introduction

e Concurrent algorithm typically described by
da program.
— Correctness of algorithm means program satisfies desired
property.
e [LA = Temporal Logic of Actions.
— Lamport, 1994.
— Both algorithm and property are specified by formulas in
single logic.
— Correctness of algorithm means algorithm implies property.
e Reasonable to abandon programing lan-
guage”’
— Mostly reasoning about concurrent algorithms.
— Concurrent programs are much to complicated.
— 1 page algorithm = 5000 lines of C code.

— Goal to detect algorithmic errors.

Talking about concurrent algorithms!

Wolfgang Schreiner

The Temporal Logic of Actions |

Logic Versus Programming

e Aren't programs simpler than logic formu-
las?

— Everyday mathematics simpler than programs.
— Assignment versus equality!

— Program versus mathematical functions.

e Methods for reasoning about programs
based on toy languages.

— Simpler than real programming languages.

— More complicated than simple logic.

e Resemblance often misleasing:
—{z=0}y=x+1{y=a+1}
— x:=0; y:=x+1; write(y,x+1)

— May be different in certain contexts (aliasing)!

Real languages contain difficult concepts be-
cause they must yield reasonably efficient pro-
grams for complex computers.

Wolfgang Schreiner 2

The Temporal Logic of Actions |

Goals of a Programming Logic

Reasoning about concurrent algorithms.

e Simpler alternative to programming lan-
guages.

— No point in trading language for a complicated logic.
e Expressive to describe real algorithms.

— Formulas must not be too long and complicated to under-
stand.

e [LA formulas:

— Familiar mathematical operators (A).
— " (prime), O, 4.
e Combination of two logics:

— A logic of actions.

— A standard temporal logic.

Wolfgang Schreiner 3

The Temporal Logic of Actions |

The Logic of Actions

Values, variables and state.
e Collection Val of values.

— Algorithms manipulate data.

— Numbers, strings, sets.

e Infinite set Var of variable names.
— Algorithms assign values to variables.

e A state assigns values to variables.
— s € St = Var — Val.

ol = sl
— [[z]] € St — Val.

— Semantic meaning [[z]] of syntactic object .

Wolfgang Schreiner

The Temporal Logic of Actions |

State Functions and Predicates

e State function

— Expression built from variables and constant symbols.
= sllz® +y = 3]] = (s[[=]])*+s[y]]-3.
= s[[f]] = F(V o' sl[o]]/v)

— Correspond to program expressions (and subexpressions of

assertions).

e State predicate

— Boolean expression.

‘)
—x°=y—3

— s[[P]] € {true, false}.
— s satisfies P iff s[[P]] = true.

— Correspond to assertions (and boolean-valued program ex-

pressions).

Wolfgang Schreiner

The Temporal Logic of Actions |

Actions

e Action = boolean-valued expression.

— Variables, primed variables, constant symbols.

3 +y=y,v—1€ 2.

e Relation
state.

between old state and new

— Unprimed variables refer to old state.

— Primed variables refer to new state.

— Representation of atomic operation of concurrent program.

e Formalization of A
—[[A]] € St = S — Bool
— s[[A]]t € Bool.
— Old state s, new state .
~ STATIE = A e sl o, L)),
~olly =+ 1 = (slll] = A)
— s,t is an A step iff s[[A]]t = true.

Wolfgang Schreiner

The Temporal Logic of Actions |

Predicates as Actions

e s[[P]] is boolean for any s.

e View P as action without primed vari-
ables.

— s[[P]]t = s[[P]] for any s, t.
— s,t is a P step iff s satisfies P.

e Replacement of unprimed variables:
— State function or predicate F.
— F' = F(\V v v v),
= s[[P]]t = #[[P]]

Wolfgang Schreiner 7

The Temporal Logic of Actions |

Validity and Provability
e Action A is valid (= A)

— Every step is an A step.

—E A =Vs,t €St s[[A]]t

— = P =Vs e St s[[P]]

— True regardless of what values are substituted for primed
and unprimed variables.

— (' +y € Nat) = (2(2' +y) > 2’ + y)
e Formula F' is provable (- F')
— Formal derivation by rules of logic.

e Soundness of the logic.

— Every provable formula is valid.

-FF=EF.

Wolfgang Schreiner 8

The Temporal Logic of Actions |

Rigid Variables and Quantifiers

e Program described using parameter n.

— Mathematician: variable (symbol does not represent
known value).

— Programmer: constant (value of n does not change).
e Two kinds of variables:

— Rigid variables (unknown constant).

— (Flexible) variables (program variable).
e Constant expressions:

— Built from rigid variables and constant symbols.

— Extend state functions and actions to contain constant
expressions.

e Quantification over rigid variables
— s[[3 m € Nat: mz' = n+z]] =
1 m € Nat: m(t[[z]]) = n+s][[z]]

— A is valid if s[[A]]t equals true for all states s,¢ and all
possible values of its free rigid variables.

Wolfgang Schreiner 9

The Temporal Logic of Actions |

The Enabled Predicate
e Fnabled A

— True for s iff it is possible to take an A step starting in s.

— s[[Enabled A]] = 3t € St: s[[A]]¢
e Syntactic definition

— v; all (flexible) variables in A.

— Enabled A =
ety o0, Aler /), oo, e /U)).
— Enabled(y = (2')*+n) =
Jcty=c’+n
o If A represents actomic operation, Enabled
A is true for those states in which it is pos-

sible to perform the operation.

Wolfgang Schreiner 10

The Temporal Logic of Actions |

Simple Temporal Logic
Execution of algorithm

e Sequence of steps.

e Each step produces new state changing the
values of variables.

e Execution is sequence of states.

e Semantic meaning of algorithm is collec-
tion of all possible executions.

Temporal logic allows reasoning about se-
quences of states.

Wolfgang Schreiner 11

The Temporal Logic of Actions |

Temporal Formulas

o Always (O)
— Elementary formulas £, Es
— —FEy A O(—Ey)
- 0(E = 0(E Vv Ey))

e Semantics based on behaviors

— Infinite sequences of states.

— Behavior 0 = (sq, s1, ...)

— o[[F]] € Bool.

— o satisfies F' iff o[[F]] = true.

e Meaning of temporal formulas:

— (30, 1, --) [[F]] = so[[F]], if F elementary.

~ollF A G)) = o[[F]] A o[[G]
~ o[[-F]] = —o[[F]

— (s0, s1, --)[[OF]] =
V n € Nat: (s,, s,41, ..)|[[F]]

Wolfgang Schreiner

12

The Temporal Logic of Actions |

Some Useful Temporal Formulas

e Eventually (<)

— Fis eventually true.

- OF = -0-F,

— (s0, 51, .. [[CF]] =
I n € Nat: (s, sp11, -)[[F]]

e Infinitely Often (O<)

— <80, S1, >[[|:|<>F]] =
Vn € Nat: 4 m € Nat:
<3n—|—m: Sn4+m+1s - - >[[F]]

e Eventually Always (<O)

— (s0, 51, ..)[[COF]] =
dn € Nat: V. m € Nat:

<3n—|—mr Sntm+1s - - >[[F]]
e Leads to ()
—F— G=0(F = ©G)

— Any time F’ is true, GG is true then or at some later time.

Wolfgang Schreiner

13

The Temporal Logic of Actions |

Validity and Provability

e Validity of ' (= F)
— = F =Vo € $t*: o[[F]]
— % set of all possible behaviors.
e Representation of algorithm:

— Temporal formula F’

— o[[F]] = true iff o represents a possible execution of the
algorithm.

e Property G of algorithm:
-E F =G.
— Algorithm represented by [satisfies property G'.

e Rules will be introduced for proving tem-
poral formulas.

— Soundness: - F = = F.

Wolfgang Schreiner 14

The Temporal Logic of Actions |

The Raw Logic
Raw Temporal Logic of Actions (RTLA)

e Elementary temporal formulas are actions.
e Action A is true on behavior o
— <30, S1, >[[A]] = 30[[A]]81

— First pair sq, s; of behaviors is an A step.

e Temporal operator:

- <80, S1, .- >[[|:|A]]
= Vn € Nat: (s, s,11, ---)[[A]]
= Vn € Nat: s,[[A]]sni1-

e Predicates:

= (50, s1, .-)[[P]] = so[[P]
— (80, s1, .-)[[OP]] = Vn € Nat: s,[[P]]

TLA formulas will be subset of RTLA formu-

las.

Wolfgang Schreiner 15

The Temporal Logic of Actions |

Describing Programs with RTLA

® Program in guarded command language.

—var natural z, y = 0

do
true - ¢ =z +1
< >

[

(true — y ==y + 1)
od

e Formula ¢
— Inite = (z =0) A (y =0)
~-My =@ =2+1) A Y =y)
~-My=(y=y+1) A (2 =x)
—M=M, VvV M,
— & = Initeg AN OM

o 0[[®]] = true iff o represents possible ex-
ecution of program.

Wolfgang Schreiner 16

The Temporal Logic of Actions |

Describing Programs with RTLA

e /nity asserts initial condition.

o Action M asserts effect of first guarded
command.

e Action My asserts effect of second guarded
command.

o Action M asserts effect of non-
deterministic composition.
e Formular ® represents whole program:

— Initg is true in first state.

— Every step is an M step.

Each equivalent formula is a valid representa-
tion of the program.

Wolfgang Schreiner 17

The Temporal Logic of Actions |

TLA

e Formula @ is too simple.

— Should allow stuttering steps

— Leave both x and y unchanged.
e Example: clock specification.

— Clock C; with hours h and minutes m.

— Clock (5 with hours h, minutes m, seconds s.

— (' should statisfy specification of .

— But C5 has 59 steps where i and m do not change!
— Such stuttering steps should be ignored.

e Modification of &:
— & = Initeg AOM V ((2' =2) Ay = 1))
— & = Initg A OM,)
—[Aly=AV(f=])

e [LA is subset of RTLA

— Elementary formulas of form O[A];

Wolfgang Schreiner

18

The Temporal Logic of Actions |

Adding Liveness

e Modified ® also not acceptable:

— 2,y might be never changed!

— @ only expresses safety property.

— Program must not execute other than described steps.

e [iveness properties:

— Something does eventually happen.

— Program must eventually perform described steps.
e Dijkstra semantics:

— Infinitely many steps increase x or y.

— ® = |nitg N DM(:c,y> A OOM.
e Add fairness requirement:

— Infinitely many steps increase = and .

— & = Inite N DM<$’y> A OOM; A OOM,.

Problem: Both are not TLA formulas!

Wolfgang Schreiner

19

The Temporal Logic of Actions |

Liveness as TLA Formulas

o O[A] is TLA formula.

— —1D[—1A]f

O-[A,

<>—|(ﬁA vV fl= f)
=O(A A 1 #f)
—(A)y=ANTf#£f
— (A)is TLA formula.

e Reformulation of &:

— d = /nitq) A DM<J},y>
N D<><M1><x,y> A E|<><M2><$7y>

Wolfgang Schreiner

20

The Temporal Logic of Actions |

Fairness

e Arbitrary liveness properties dangerous:

— Used to express fairness requirements.
— May unexpectedly add safety properties.
— Add: OO (z =0).

— Consequence: never changes!

— Solution: express liveness by fairness.

e Fairness:

— If operation possible, program must eventually execute it.

o |Weak fairness:

— Operation must be executed if it remains possible to do so

for long enough time.

— (< executed) V (< impossible)
e Strong fairness:

— Operation must be executed if it is often enough possible

to do so.

— (<O executed) V (<O impossible)

Wolfgang Schreiner

21

The Temporal Logic of Actions |

Fairness

e Fairness at all times:

— O((< executed) V (< impossible))
— O((< executed) Vv (<O impossible))

e Equivalent to:

— (O executed) V (O impossible)
— (O executed) Vv (<O impossible))

e Formalization:
— executed = (A);.
— impossible =—Enabled (A);.

e Fairness conditions:
— WF(A) =(0G(A);) V (OO ~Enabled (A))
—SF;(A) =(OO(A)y) V (OO —Enabled (A))
— SF;(A) = WF/(A)

Wolfgang Schreiner

22

The Temporal Logic of Actions |

Rewriting the Fairness Requirement

e Machine-closed

— Pair (Init A O[N]y, F') is machine-closed
= Init A O[N]; A F does not add additional safety prop-
erties.

— If F'is conjunciton of conditions WF;(A) and/or SF/(A),
where each (A); implies N, then /nit A O[N], A F is
machine-closed.

e Fairness requirements:

— Rewrite OO(My) () A OO(My)(,) as fairness conditons.
— Enabled (M), = Enabled (M, > = true
— WF; y(M1) = OO(M1) (s
WF, (M) = BO(Ma) (4
— @ = Initg A OMy,
/\WF<$7y>(|\/|1) N WF<T’U>(|\/|2)

Wolfgang Schreiner 23

The Temporal Logic of Actions |

Examining Formula ¢

e Each TLA formula representing program:
— Init A O[N]; A F
— Init specifies initial variable values.

— N is the program’s next-state relation that represents the
execution of the inidividual atomic operations.

— f is the n tuple of all flexible variables.

— F'is a conjunciton of formulas of the form WF ;(A) and/or
SF ;(A) wher A represents a subset of the program'’s atomic
operations.

e Parallel composition:

— Two programs represented by ¢ and V.
— No variables in common

— @ A U describes parallel composition of both programs!

Wolfgang Schreiner 24

The Temporal Logic of Actions |

Syntax of Simple TLA

TLA logic without quantification.

e (formula)={predicate)

I EI[<‘3Ct’.on>]<state function
| (formula) A (formula) || O(formula)

> | = (formula)

e (action)= boolean-valued expression
of constant symbols,
variables, and primed variables

e (predicate)= action with no primed variables

| Enabled {action)

e (state function)= non-boolean expression
containing constant symobls and variables

Wolfgang Schreiner

25

The Temporal Logic of Actions |

Semantics of Simple TLA

o s[[f]] = f(V 0" s[[v]]/v)

o s[[A]lt = A(Y "v’: s[[v]]/v, t[[v]]/v)
e (s0, 51, -) [[A]] = so[[Al]s1

e = A=Vs,teSt s[[Al]t

e s[[Enabled A]] = 3t € St: s[[A]]¢

e (s0, 51, ..)[[OF]] =
V n € Nat: (s,, spi1, -)|[[F]]

o o[[F A G = o[[F]] A of[G]]
o o[[~F]] = ~o[[F]]
o= F =VoeSte of[Allt

Wolfgang Schreiner

26

The Temporal Logic of Actions |

Additional Notation

oy =p(V'v' v /v)

o [Al;=AV (/=)

o (A) = AN (£ f)

o Unchanged f = f' = f

o OF = -0-F

o '~ G =0(F = OG)

e WF;(A) =(OC(A)f) v (OO —Enabled (A) /)
o SE;(A) =(0O(A Y;) V (OO —Enabled (A)))

Wolfgang Schreiner

27

The Temporal Logic of Actions |

The Rules of Simple Temporal Logic

F’ provable by propositional logic

e STLI. OF
o STL2. FOF = F
e STL3. FO0OF =0F
o STLA. D? z SG
e STL5. FO(FAG)=(0OF) A (OG)
e STL6. F (COF) A (COG) = CO(F A G)
o LATTICE.
FA(ce$)=

(Ho— (G V3d €S:(c>d) N Hy))

F = ((Hc € S: H)— G)

> a well-founded partial order on set §

Wolfgang Schreiner

28

The Temporal Logic of Actions |

The Basic Rules of TLA

PA(f=Ff)=F
OP =P AOP= Py
P A <A>f = QA [B]g
OP A O(A); = 0Q A O[B],
Additional Rules
I A [N]f = [
TAON|, = Of
eINV2. FO/= (ON];=0[NATAT])
P AN = (P'VQ)
P A <N N A>f = Q/
P = Enabled (A);
O[N]y A WE4(A) = (P — Q)

o TLAL.

o TLA2.

o INVL.

o WF1.

Wolfgang Schreiner

29

The Temporal Logic of Actions |

Additional Rules

o WF2. B
(N A B)y = (M),
P AP AN{(NAA); A Enabled (M), = B
P N Enabled (M), = Enabled (A)
O[N A —B]; A WF,(A) A OF
A OOEnabled (M), = SOP

O[N]; A WF;(A) A OF = WF,(M)
o SF1.
P AN = (P'V Q)
PANANAY= Q@
OP A O[N]y A OF = $Enabled (A)
O[N]; A SF/(A) A OF = (P — Q)
o SF2. B
(N A B); = (M),
PAP ANAA); =B
P A Enabled (M), = Enabled (A);
O[N A =B]; A SFf(A) A OF
A OO Enabled (M), = SOP
O[N], A SF;(A) A OF = SF,(M)

Wolfgang Schreiner

30

