The Temporal Logic of Actions I

The Temporal Logic of Actions I

Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

Introduction

- Concurrent algorithm typically described by a program.
 - Correctness of algorithm means program satisfies desired property.
- TLA = Temporal Logic of Actions.
 - Lamport, 1994.
 - Both algorithm and property are specified by formulas in single logic.
 - Correctness of algorithm means algorithm implies property.
- Reasonable to abandon programing language?
 - Mostly reasoning about concurrent algorithms.
 - Concurrent programs are much to complicated.
 - -1 page algorithm = 5000 lines of C code.
 - Goal to detect algorithmic errors.

Talking about concurrent algorithms!

Logic Versus Programming

- Aren't programs simpler than logic formulas?
 - Everyday mathematics simpler than programs.
 - Assignment versus equality!
 - Program versus mathematical functions.
- Methods for reasoning about programs based on toy languages.
 - Simpler than real programming languages.
 - More complicated than simple logic.
- Resemblance often misleasing:

```
- \{ x = 0 \} y := x+1 \{ y = x+1 \}
```

- -x:=0; y:=x+1; write(y,x+1)
- May be different in certain contexts (aliasing)!

Real languages contain difficult concepts because they must yield reasonably efficient programs for complex computers.

Goals of a Programming Logic

Reasoning about concurrent algorithms.

- Simpler alternative to programming languages.
 - No point in trading language for a complicated logic.
- Expressive to describe real algorithms.
 - Formulas must not be too long and complicated to understand.
- TLA formulas:
 - Familiar mathematical operators (\wedge).
 - ' (prime), □, ∃.
- Combination of two logics:
 - A logic of actions.
 - A standard temporal logic.

The Logic of Actions

Values, variables and state.

- Collection Val of values.
 - Algorithms manipulate data.
 - Numbers, strings, sets.
- Infinite set Var of variable names.
 - Algorithms assign values to variables.
- A state assigns values to variables.
 - $-s \in \mathsf{St} = \mathsf{Var} \to \mathsf{Val}.$
 - -s[[x]] := s(x).
 - $-[[x]] \in St \rightarrow Val.$
 - Semantic meaning [[x]] of syntactic object x.

State Functions and Predicates

• State function

- Expression built from variables and constant symbols.
- $-s[[x^2+y-3]] = (s[[x]])^2 + s[[y]] 3.$
- $-s[[f]] := f(\forall 'v' : s[[v]]/v)$
- Correspond to program expressions (and subexpressions of assertions).

• State predicate

- Boolean expression.
- $-x^2 = y 3$
- $-s[[P]] \in \{ true, false \}.$
- -s satisfies P iff s[[P]] =true.
- Correspond to assertions (and boolean-valued program expressions).

Actions

- Action = boolean-valued expression.
 - Variables, primed variables, constant symbols.
 - $-x' + y = y, x 1 \in z'.$
- Relation between old state and new state.
 - Unprimed variables refer to old state.
 - Primed variables refer to new state.
 - Representation of atomic operation of concurrent program.
- Formalization of A
 - [[A]] \in St \rightarrow S \rightarrow Bool
 - $-s[[A]]t \in \mathbf{Bool}.$
 - Old state s, new state t.
 - $-s[[A]]t \equiv A(\forall 'v: s[[v]]/v, t[[v]]/v').$
 - -s[[y = x' + 1]]t = (s[[y]] = t[[x]] + 1).
 - -s, t is an A step iff s[[A]]t =true.

Predicates as Actions

- s[[P]] is boolean for any s.
- ullet View P as action without primed variables.
 - -s[[P]]t = s[[P]] for any s, t.
 - -s, t is a P step iff s satisfies P.
- Replacement of unprimed variables:
 - State function or predicate F.
 - $-F' := F(\forall 'v': v'/v).$
 - -s[[P']]t = t[[P]]

Validity and Provability

- Action A is valid $(\models A)$
 - Every step is an A step.
 - $\models A \equiv \forall s, t \in \mathbf{St} : s[[A]]t$
 - $\models P \equiv \forall s \in \mathbf{St}: s[[P]]$
 - True regardless of what values are substituted for primed and unprimed variables.
 - $-(x'+y \in \mathbf{Nat}) \Rightarrow (2(x'+y) \geq x'+y)$
- Formula F is provable $(\vdash F)$
 - Formal derivation by rules of logic.
- Soundness of the logic.
 - Every provable formula is valid.
 - $-\vdash F \Rightarrow \models F.$

Rigid Variables and Quantifiers

- Program described using parameter n.
 - Mathematician: variable (symbol does not represent known value).
 - Programmer: constant (value of n does not change).

• Two kinds of variables:

- Rigid variables (unknown constant).
- (Flexible) variables (program variable).

• Constant expressions:

- Built from rigid variables and constant symbols.
- Extend state functions and actions to contain constant expressions.

Quantification over rigid variables

- $-s[[\exists m \in \mathbf{Nat}: mx' = n+x]] \equiv \exists m \in \mathbf{Nat}: m(t[[x]]) = n+s[[x]]$
- A is valid if s[[A]]t equals **true** for all states s,t and all possible values of its free rigid variables.

The Enabled Predicate

- Enabled A
 - True for s iff it is possible to take an A step starting in s.
 - $-s[[Enabled A]] \equiv \exists t \in St: s[[A]]t$
- Syntactic definition
 - $-v_i$ all (flexible) variables in A.
 - Enabled A \equiv $\exists c_1, \ldots, c_n$: A($c_1/v_1', \ldots, c_n/v_n'$).
 Enabled($y = (x')^2 + n$) = $\exists c: y = c^2 + n$
- If A represents actomic operation, *Enabled*A is true for those states in which it is possible to perform the operation.

Simple Temporal Logic

Execution of algorithm

- Sequence of steps.
- Each step produces new state changing the values of variables.
- Execution is sequence of states.
- Semantic meaning of algorithm is collection of all possible executions.

Temporal logic allows reasoning about sequences of states.

Temporal Formulas

- Always (□)
 - Elementary formulas E_1, E_2
 - $-\neg E_1 \wedge \Box (\neg E_2)$
 - $-\Box(E_1\Rightarrow\Box(E_1\vee E_2))$
- Semantics based on behaviors
 - Infinite sequences of states.
 - Behavior $\sigma = \langle s_0, s_1, \ldots \rangle$
 - $-\sigma[[F]] \in \mathbf{Bool}.$
 - $-\sigma$ satisfies F iff $\sigma[[F]] =$ true.
- Meaning of temporal formulas:
 - $-\langle s_0, s_1, \ldots \rangle[[F]] \equiv s_0[[F]]$, if F elementary.
 - $-\sigma[[F \land G]] \equiv \sigma[[F]] \land \sigma[[G]]$
 - $-\sigma[[\neg F]] \equiv \neg \sigma[[F]]$
 - $-\langle s_0, s_1, \dots \rangle [[\Box F]] \equiv$ $\forall n \in \mathbf{Nat}: \langle s_n, s_{n+1}, \dots \rangle [[F]]$

Some Useful Temporal Formulas

- Eventually (♦)
 - -F is eventually true.
 - $\diamondsuit F \equiv \neg \Box \neg F.$
 - $-\langle s_0, s_1, \dots \rangle [[\diamondsuit F]] \equiv$ $\exists n \in \mathbf{Nat}: \langle s_n, s_{n+1}, \dots \rangle [[F]]$
- Infinitely Often (□◊)
 - $-\langle s_0, s_1, \dots \rangle [[\Box \diamondsuit F]] \equiv \\ \forall n \in \mathbf{Nat}: \exists m \in \mathbf{Nat}: \\ \langle s_{n+m}, s_{n+m+1}, \dots \rangle [[F]]$
- Eventually Always (◇□)
 - $-\langle s_0, s_1, \dots \rangle [[\diamondsuit \Box F]] \equiv \\ \exists n \in \mathbf{Nat}: \ \forall \ m \in \mathbf{Nat}: \\ \langle s_{n+m}, s_{n+m+1}, \dots \rangle [[F]]$
- Leads to (\mapsto)
 - $-F \mapsto G \equiv \Box(F \Rightarrow \Diamond G)$
 - Any time F is true, G is true then or at some later time.

Validity and Provability

- Validity of $F (\models F)$
 - $\models F \equiv \forall \sigma \in \mathbf{St}^{\infty} : \sigma[[F]]$
 - $-\infty$ set of all possible behaviors.
- Representation of algorithm:
 - Temporal formula F:
 - $-\sigma[[F]] =$ true iff σ represents a possible execution of the algorithm.
- Property G of algorithm:
 - $\models F \Rightarrow G$.
 - Algorithm represented by F satisfies property G.
- Rules will be introduced for proving temporal formulas.
 - Soundness: $\vdash F \Rightarrow \models F$.

The Raw Logic

Raw Temporal Logic of Actions (RTLA)

- Elementary temporal formulas are actions.
- \bullet Action A is true on behavior σ :
 - $-\langle s_0, s_1, \ldots \rangle$ [[A]] $\equiv s_0$ [[A]] s_1
 - First pair s_0, s_1 of behaviors is an A step.
- Temporal operator:

$$-\langle s_0, s_1, \dots \rangle [[\Box A]]$$

$$\equiv \forall n \in \mathbf{Nat}: \langle s_n, s_{n+1}, \dots \rangle [[A]]$$

$$\equiv \forall n \in \mathbf{Nat}: s_n[[A]]s_{n+1}.$$

• Predicates:

$$-\langle s_0, s_1, \dots \rangle[[P]] \equiv s_0[[P]]$$
$$-\langle s_0, s_1, \dots \rangle[[\Box P]] \equiv \forall n \in \mathbf{Nat}: s_n[[P]]$$

TLA formulas will be subset of RTLA formulas.

Describing Programs with RTLA

• Program in guarded command language.

```
- var natural x, y = 0 do  \langle \mathbf{true} \to x := x + 1 \rangle  []  \langle \mathbf{true} \to y := y + 1 \rangle  od
```

• Formula Φ

```
\begin{aligned}
&-\operatorname{Init}_{\Phi} \equiv (x=0) \wedge (y=0) \\
&-\operatorname{M}_{1} \equiv (x'=x+1) \wedge (y'=y) \\
&-\operatorname{M}_{2} \equiv (y'=y+1) \wedge (x'=x) \\
&-\operatorname{M} \equiv \operatorname{M}_{1} \vee \operatorname{M}_{2} \\
&-\Phi \equiv \operatorname{Init}_{\Phi} \wedge \Box \operatorname{M}
\end{aligned}
```

• $\sigma[[\Phi]] = \mathbf{true}$ iff σ represents possible execution of program.

Describing Programs with RTLA

- $Init_{\Phi}$ asserts initial condition.
- Action M₁ asserts effect of first guarded command.
- Action M₂ asserts effect of second guarded command.
- Action M asserts effect of nondeterministic composition.
- ullet Formular Φ represents whole program:
 - *Init* $_{\Phi}$ is true in first state.
 - Every step is an M step.

Each equivalent formula is a valid representation of the program.

TLA

- ullet Formula Φ is too simple.
 - Should allow stuttering steps
 - Leave both x and y unchanged.
- Example: clock specification.
 - Clock C_1 with hours h and minutes m.
 - Clock C_2 with hours h, minutes m, seconds s.
 - $-C_2$ should statisfy specification of C_1 .
 - But C_2 has 59 steps where h and m do not change!
 - Such stuttering steps should be ignored.
- Modification of Φ :
 - $-\Phi \equiv Init_{\Phi} \wedge \Box (M \vee ((x'=x) \wedge (y'=y)))$
 - $-\Phi \equiv \mathit{Init}_{\Phi} \wedge \Box \mathsf{M}_{\langle x,y \rangle}$
 - $-[\mathsf{A}]_f := \mathsf{A} \vee (f' = f)$
- TLA is subset of RTLA
 - Elementary formulas of form $\square[A]_f$

Adding Liveness

- ullet Modified Φ also not acceptable:
 - -x,y might be never changed!
 - $-\Phi$ only expresses *safety* property.
 - Program must not execute other than described steps.
- Liveness properties:
 - Something does eventually happen.
 - Program must eventually perform described steps.
- Dijkstra semantics:
 - Infinitely many steps increase x or y.
 - $-\Phi \equiv \mathit{Init}_{\Phi} \wedge \Box \mathsf{M}_{\langle x,y \rangle} \wedge \Box \diamondsuit \mathsf{M}.$
- Add fairness requirement:
 - Infinitely many steps increase x and y.
 - $-\Phi \equiv \operatorname{Init}_{\Phi} \wedge \square \mathsf{M}_{\langle x,y\rangle} \wedge \square \diamondsuit \mathsf{M}_{1} \wedge \square \diamondsuit \mathsf{M}_{2}.$

Problem: Both are not TLA formulas!

Liveness as TLA Formulas

• $\square[A]_f$ is TLA formula.

$$\begin{array}{l} - \neg \Box [\neg \mathsf{A}]_f \\ \equiv \Diamond \neg [\neg \mathsf{A}]_f \\ \equiv \Diamond \neg (\neg \mathsf{A} \lor f' = f) \\ \equiv \Diamond (\mathsf{A} \land f' \neq f) \\ - \langle \mathsf{A} \rangle_f \equiv \mathsf{A} \land f' \neq f \\ - \langle \mathsf{A} \rangle_f \text{ is TLA formula.} \end{array}$$

\bullet Reformulation of Φ :

$$- \Phi \equiv \operatorname{Init}_{\Phi} \wedge \square \mathsf{M}_{\langle x, y \rangle} \\ \wedge \square \diamondsuit \langle \mathsf{M}_{1} \rangle_{\langle x, y \rangle} \wedge \square \diamondsuit \langle \mathsf{M}_{2} \rangle_{\langle x, y \rangle}$$

Fairness

Arbitrary liveness properties dangerous:

- Used to express fairness requirements.
- May unexpectedly add safety properties.
- $\mathsf{Add} \colon \Box \Diamond (x = 0).$
- Consequence: x never changes!
- Solution: express liveness by fairness.

• Fairness:

- If operation possible, program must eventually execute it.

• Weak fairness:

- Operation must be executed if it remains possible to do so for long enough time.
- $-(\diamondsuit \text{ executed}) \lor (\diamondsuit \text{ impossible})$

• Strong fairness:

- Operation must be executed if it is often enough possible to do so.
- $-(\diamondsuit \text{ executed}) \lor (\diamondsuit \Box \text{ impossible})$

Fairness

- Fairness at all times:
 - $-\Box((\diamondsuit \text{ executed}) \lor (\diamondsuit \text{ impossible}))$
 - $-\Box((\Diamond \text{ executed}) \lor (\Diamond \Box \text{ impossible}))$
- Equivalent to:
 - $-(\Box \diamondsuit \text{ executed}) \lor (\Box \diamondsuit \text{ impossible})$
 - $-(\Box \diamondsuit \text{ executed}) \lor (\diamondsuit \Box \text{ impossible}))$
- Formalization:
 - executed $\equiv \langle A \rangle_f$.
 - impossible $\equiv \neg Enabled \langle A \rangle_f$.
- Fairness conditions:
 - $-\operatorname{WF}_f(\mathsf{A}) \equiv (\Box \diamondsuit \langle \mathsf{A} \rangle_f) \lor (\Box \diamondsuit \neg \mathit{Enabled} \langle \mathsf{A} \rangle_f)$
 - $-\operatorname{SF}_f(A) \equiv (\Box \Diamond \langle A \rangle_f) \vee (\Diamond \Box \neg Enabled \langle A \rangle_f)$
 - $-\operatorname{SF}_f(A) \Rightarrow \operatorname{WF}_f(A)$

Rewriting the Fairness Requirement

Machine-closed

- Pair (Init $\wedge \square[N]_f$, F) is machine-closed \equiv Init $\wedge \square[N]_f \wedge F$ does not add additional safety properties.
- If F is conjunciton of conditions $\operatorname{WF}_f(A)$ and/or $\operatorname{SF}_f(A)$, where each $\langle A \rangle_f$ implies N, then $\operatorname{Init} \wedge \square[N]_v \wedge F$ is machine-closed.

• Fairness requirements:

- Rewrite $\Box \diamondsuit \langle \mathsf{M}_1 \rangle_{\langle x,y \rangle} \land \Box \diamondsuit \langle \mathsf{M}_2 \rangle_{\langle x,y \rangle}$ as fairness conditons.
- Enabled $\langle \mathsf{M}_1
 angle_{\langle x,y
 angle} =$ Enabled $\langle \mathsf{M}_2
 angle_{\langle x,y
 angle} =$ true
- $-\operatorname{WF}_{\langle x,y\rangle}(\mathsf{M}_1) = \Box \diamondsuit \langle \mathsf{M}_1 \rangle_{\langle x,y\rangle}$ $\operatorname{WF}_{\langle x,y\rangle}(\mathsf{M}_2) = \Box \diamondsuit \langle \mathsf{M}_2 \rangle_{\langle x,y\rangle}$
- $\begin{array}{c} \Phi \equiv \mathit{Init}_{\Phi} \wedge \Box \mathsf{M}_{\langle x,y \rangle} \\ \wedge \mathsf{WF}_{\langle x,y \rangle}(\mathsf{M}_{1}) \wedge \mathsf{WF}_{\langle x,y \rangle}(\mathsf{M}_{2}) \end{array}$

Examining Formula Φ

Each TLA formula representing program:

- *Init* $\wedge \square[N]_f \wedge F$
- Init specifies initial variable values.
- N is the program's next-state relation that represents the execution of the inidividual atomic operations.
- -f is the n tuple of all flexible variables.
- -F is a conjunction of formulas of the form $WF_f(A)$ and/or $SF_f(A)$ wher A represents a subset of the program's atomic operations.

• Parallel composition:

- Two programs represented by Φ and Ψ .
- No variables in common
- $-\Phi \wedge \Psi$ describes parallel composition of both programs!

Syntax of Simple TLA

TLA logic without quantification.

- $\langle formula \rangle \equiv \langle predicate \rangle$ $\parallel \Box [\langle action \rangle]_{\langle state\ function \rangle} \parallel \neg \langle formula \rangle$ $\parallel \langle formula \rangle \wedge \langle formula \rangle \parallel \Box \langle formula \rangle$
- \(\action\)\(\geq\) boolean-valued expression
 of constant symbols,
 variables, and primed variables
- $\langle predicate \rangle \equiv action$ with no primed variables $\parallel Enabled \langle action \rangle$
- $\langle state\ function \rangle \equiv$ non-boolean expression containing constant symobls and variables

Semantics of Simple TLA

- $s[[f]] \equiv f(\forall 'v' : s[[v]]/v)$
- $s[[A]]t \equiv A(\forall 'v': s[[v]]/v, t[[v]]/v')$
- $\langle s_0, s_1, \dots \rangle$ [[A]] $\equiv s_0$ [[A]] s_1
- $\models A \equiv \forall \ s, t \in \mathbf{St} : \ s[[A]]t$
- $s[[Enabled A]] \equiv \exists t \in St: s[[A]]t$
- $\langle s_0, s_1, \dots \rangle [[\Box F]] \equiv$ $\forall n \in \mathbf{Nat}: \langle s_n, s_{n+1}, \dots \rangle [[F]]$
- $\sigma[[F \wedge G]] \equiv \sigma[[F]] \wedge \sigma[[G]]$
- $\bullet \ \sigma[[\neg F]] \equiv \neg \sigma[[F]]$
- $\models F \equiv \forall \ \sigma \in \mathbf{St}^{\infty} : \ \sigma[[\mathsf{A}]]t$

Additional Notation

- $p' \equiv p(\forall' v' : v'/v)$
- $\bullet [\mathsf{A}]_f \equiv \mathsf{A} \vee (f' = f)$
- $\bullet \ \langle \mathsf{A} \rangle_f \equiv \mathsf{A} \ \land \ (f' \neq f)$
- Unchanged $f \equiv f' = f$
- $\bullet \diamond F \equiv \neg \Box \neg F$
- $F \mapsto G \equiv \Box(F \Rightarrow \Diamond G)$
- WF_f(A) \equiv ($\Box \diamondsuit \langle A \rangle_f$) \lor ($\Box \diamondsuit \neg Enabled \langle A \rangle_f$)
- $SF_f(A) \equiv (\Box \Diamond \langle A \rangle_f) \lor (\Diamond \Box \neg Enabled \langle A \rangle_f)$

The Rules of Simple Temporal Logic

• STL1.
$$F$$
 provable by propositional logic $\Box F$

- STL2. $\vdash \Box F \Rightarrow F$
- STL3. $\vdash \Box \Box F \equiv \Box F$

• STL4.
$$F \Rightarrow G$$
 $\Box F \Rightarrow \Box G$

• STL5.
$$\vdash \Box(F \land G) \equiv (\Box F) \land (\Box G)$$

• STL6.
$$\vdash (\Diamond \Box F) \land (\Diamond \Box G) \equiv \Diamond \Box (F \land G)$$

• LATTICE.

$$F \land (c \in S) \Rightarrow \\ (H_c \mapsto (G \lor \exists d \in S: (c > d) \land H_d))$$

$$F \Rightarrow ((\exists c \in S: H_c) \mapsto G)$$

> a well-founded partial order on set S

The Basic Rules of TLA

• TLA1.
$$\frac{P \wedge (f = f') \Rightarrow P'}{\Box P \equiv P \wedge \Box [P \Rightarrow P']_f}$$

• TLA2.
$$\frac{P \wedge \langle \mathsf{A} \rangle_f \Rightarrow Q \wedge [\mathsf{B}]_g}{\Box P \wedge \Box \langle \mathsf{A} \rangle_f \Rightarrow \Box Q \wedge \Box [\mathsf{B}]_g}$$

Additional Rules

• INV1.
$$\frac{I \wedge [N]_f \Rightarrow I'}{I \wedge \square[N]_f \Rightarrow \square I}$$

• INV2.
$$\vdash \Box I \Rightarrow (\Box [N]_f \equiv \Box [N \land I \land I']_f)$$

$$P \wedge [N]_f \Rightarrow (P' \vee Q')$$

 $P \wedge \langle N \wedge A \rangle_f \Rightarrow Q'$

$$\frac{P \Rightarrow \textit{Enabled } \langle \mathsf{A} \rangle_f}{\Box[\mathsf{N}]_f \land \mathsf{WF}_f(\mathsf{A}) \Rightarrow (P \mapsto Q)}$$

Additional Rules

• WF2. $\langle \mathsf{N} \wedge \mathsf{B} \rangle_f \Rightarrow \langle \overline{\mathsf{M}} \rangle_{\overline{g}}$ $P \wedge P' \wedge \langle \mathsf{N} \wedge \mathsf{A} \rangle_f \wedge \overline{Enabled} \langle \mathsf{M} \rangle_g \Rightarrow \mathsf{B}$ $P \wedge \overline{Enabled} \langle \mathsf{M} \rangle_g \Rightarrow \overline{Enabled} \langle \mathsf{A} \rangle_f$ $\square [\mathsf{N} \wedge \neg \mathsf{B}]_f \wedge \mathsf{WF}_f(\mathsf{A}) \wedge \square F$ $\wedge \diamondsuit \square \overline{Enabled} \langle \mathsf{M} \rangle_g \Rightarrow \diamondsuit \square P$ $\square [\mathsf{N}]_f \wedge \mathsf{WF}_f(\mathsf{A}) \wedge \square F \Rightarrow \overline{\mathsf{WF}_g(\mathsf{M})}$

• SF1.

$$P \wedge [N]_f \Rightarrow (P' \vee Q')$$

 $P \wedge \langle N \wedge A \rangle_f \Rightarrow Q'$
 $\Box P \wedge \Box [N]_f \wedge \Box F \Rightarrow \Diamond Enabled \langle A \rangle_f$
 $\Box [N]_f \wedge SF_f(A) \wedge \Box F \Rightarrow (P \mapsto Q)$

• SF2.

$$\langle \mathsf{N} \wedge \mathsf{B} \rangle_f \Rightarrow \langle \overline{\mathsf{M}} \rangle_{\overline{g}}$$

 $P \wedge P' \wedge \langle \mathsf{N} \wedge \mathsf{A} \rangle_f \Rightarrow \mathsf{B}$
 $P \wedge \overline{Enabled} \langle \mathsf{M} \rangle_g \Rightarrow Enabled \langle \mathsf{A} \rangle_f$
 $\Box [\mathsf{N} \wedge \neg \mathsf{B}]_f \wedge \mathsf{SF}_f(\mathsf{A}) \wedge \Box F$
 $\wedge \Box \diamondsuit \overline{Enabled} \langle \mathsf{M} \rangle_g \Rightarrow \diamondsuit \Box P$
 $\Box [\mathsf{N}]_f \wedge \mathsf{SF}_f(\mathsf{A}) \wedge \Box F \Rightarrow \overline{\mathsf{SF}_g(\mathsf{M})}$