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The PVS Prototype Verification System

Integrated environment for developing and analyzing formal specs.

SRI (Software Research Institute) International, Menlo Park, CA.
Developed since 1993, current version 3.2 (November 2004).
Core system is implemented in Common Lisp.
Emacs-based frontend with Tcl/Tk-based GUI extensions.
Not open source, but Linux/Intel executables are freely available.
http://pvs.csl.sri.com

PVS specification language.

Based on classical, typed higher-order logic.
Used to specify libraries of theories.

PVS theorem prover.

Collection of basic inference rules and high-level proof strategies.
Applied interactively within a sequent calculus framework.
Proofs yield proof scripts for manipulating and replaying proofs.

Applied e.g. in the design of flight control software and real-time systems.
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Theorem Proving in PVS

PVS combines aspects of interactive “proof assistants” with aspects of
automatic “theorem provers”.

Human control of the higher levels of proof development.
Provides a fairly intuitive interactive user interface.

In contrast to provers with a command-line interface only.

Supports an expressive specification language with a rich logic.
In contrast to provers supporting e.g. only first-order predicate logic.

Automation of the the lower levels of proof elaboration.
Includes various decision procedures.

Propositional logic, theory of equality with uninterpreted function
symbols, quantifier-free linear integer arithmetic with equalities and
inequalities, arrays and functions with updates, model checking.

Supports various proof strategies and allows to define own strategies.
Induction over various domains, term rewriting, heuristics for proving
quantified formulas, etc.

PVS is a proof assistant to some, a theorem prover to others.
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Usage of PVS

For a first overview, see the “PVS System Guide”.

Develop a theory.
Declarations/definitions of types, constants, functions/predicates.
Specifies axioms (assumed) and other formulas (to be proved).
Theory may import from and export to other theories.

Parse and type-check the theory.
Creates type-checking conditions (TCCs).
Need to be proved (now or later).
Proofs of other formulas assume truth of these TCCs.

Prove the formulas in the theory.
Human-guided development of the proof.
Proof steps are recorded in a proof script for later use.

Continuing or replaying or copying proofs.

Generate documentation.
Theories and proofs in PostScript, LATEX or HTML.

Sophisticated status and change management for large-scale verification.
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Developing a Theory

PVS uses the Emacs editor as its frontend.

Starting PVS.

pvs [filename.pvs] &

Each PVS session operates in a context (≈ directory).
Files can be created in the context or imported from another context.

Finding a PVS file or creating a new one.

C-key : Ctrl + key, M-key : Alt + key (Meta = Alt).

C-x C-f Find an existing PVS file.
M-x nf Create a new PVS file.
M-x imf Import an existing PVS file from another context.

File editing as in Emacs (C-h m for help on the PVS mode); most
commands can be also invoked from the menu bar.
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PVS Startup
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PVS Menu Bar
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A PVS Theory

% Tutorial example from PVS System Guide

sum: THEORY

BEGIN

% function/predicate parameter or formula variable

n: VAR nat

% recursive function definitions need a termination "measure"

sum(n): RECURSIVE nat =

(IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF)

MEASURE (LAMBDA n: n)

% A formula (all the same: THEOREM, LEMMA, PROPOSITION, ...)

closed_form: THEOREM

sum(n) = n * (n+1)/2

END sum

See the “PVS Language Reference”.
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Parsing and Type-Checking a Theory

Basic commands:

M-x pa Parse (syntax-check) the PVS file.
M-x tc Type-check PVS file and generate TCCs.
M-x tcp Type-check PVS file and prove TCCs.
M-x tccs View status of TCCs.

Generated TCCs:

% Subtype TCC generated (at line 8, column 36) for n - 1

% expected type nat

% proved - complete

sum_TCC1: OBLIGATION FORALL (n: nat): NOT n = 0 IMPLIES n - 1 >= 0;

% Termination TCC generated (at line 8, column 32) for sum(n - 1)

% proved - complete

sum_TCC2: OBLIGATION FORALL (n: nat): NOT n = 0 IMPLIES n - 1 < n;

Proving the TCCs often proceeds fully automatically.
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Proving a Formula

{-1} A1

[-2] A2

...

{1} B1

[2] B2

...

For each formula F , PVS maintains a proof tree.
Each node of the tree denotes a proof goal.

Logical sequent: A1, A2, . . . ` B1, B2, . . ..
Interpretation: (A1 ∧ A2 ∧ . . .) ⇒ (B1 ∨ B2 ∨ . . .)

Initially the tree consists of the root node ` F only.

The overall task is to expand the tree to completion.
Every leaf goal shall denote an obviously true formula.

Either the consequent B1, B2, . . . of the goal is true,

Consequent is empty or some Bi is true.

Or the antecedent A1, A2, . . . of the goal is false.

Some Ai is false.

In each proof step, a proof rule is applied to a non-true leaf goal.

Either the goal is recognized as true and thus the branch is completed,

Or the goal becomes the parent of a number of children (subgoals).

The conjunction of subgoals implies the parent goal.
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Proving a Formula

Running a Proof:

M-x pr Start proof of formula
M-x xpr Start proof with graphics
M-x redo-proof Rerun previous proof
M-x show-proof Show proof in text view
M-x x-show-proof Show proof in graphics view
M-x display-proofs-formula Show all proofs of formula

Prover commands: Rule? command

M-p Toggle back in command history (“previous”)
M-n Toggle forward in command history (“next”)
C-c C-c Interrupt current proof step
(postpone) Switch to next open goal
q Quit current proof attempt

While in proof mode, still files can be edited.
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Proof in Graphics View

The circled ` symbol denotes the current proof situation; by clicking on
any ` symbol, the corresponding proof situation is displayed.
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Proof in Graphics View

Visual representation of a proof script.
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Proof in Text View

closed_form :

|-------

{1} FORALL (n: nat): sum(n) = n * (n + 1) / 2

Rerunning step: (induct "n")

Inducting on n on formula 1,

this yields 2 subgoals:

closed_form.1 :

|-------

{1} sum(0) = 0 * (0 + 1) / 2

Rerunning step: (expand* "sum")

Expanding the definition(s) of (sum),

this simplifies to:

closed_form.1 :

|-------

{1} 0 = 0 / 2

Rerunning step: (assert)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of closed_form.1.
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Proof in Text View

closed_form.2 :

|-------

{1} FORALL j:

sum(j) = j * (j + 1) / 2 IMPLIES

sum(j + 1) = (j + 1) * (j + 1 + 1) / 2

Rerunning step: (skolem!)

Skolemizing,

this simplifies to:

closed_form.2 :

|-------

{1} sum(j!1) = j!1 * (j!1 + 1) / 2 IMPLIES

sum(j!1 + 1) = (j!1 + 1) * (j!1 + 1 + 1) / 2

Rerunning step: (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:
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Proof in Text View

closed_form.2 :

{-1} sum(j!1) = j!1 * (j!1 + 1) / 2

|-------

{1} sum(j!1 + 1) = (j!1 + 1) * (j!1 + 1 + 1) / 2

Rerunning step: (expand "sum" +)

Expanding the definition of sum,

this simplifies to:

closed_form.2 :

[-1] sum(j!1) = j!1 * (j!1 + 1) / 2

|-------

{1} 1 + sum(j!1) + j!1 = (2 + j!1 + (j!1 * j!1 + 2 * j!1)) / 2

Rerunning step: (assert)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of closed_form.2.

Q.E.D.
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Automatic Version of the Proof

closed_form :

|-------

{1} FORALL (n: nat): sum(n) = n * (n + 1) / 2

Rerunning step: (induct-and-simplify "n")

sum rewrites sum(0)

to 0

sum rewrites sum(1 + j!1)

to 1 + sum(j!1) + j!1

By induction on n, and by repeatedly rewriting and simplifying,

Q.E.D.

Run time = 0.62 secs.

Real time = 1.56 secs.
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Generating Documentation

Basic commands:

M-x ltt Create LATEX for theory
M-x ltv View LATEX for theory
M-x ltp Create LATEX for last proof
M-x lpv View LATEX for last proof
M-x html-pvs-file Create HTML for PVS file

sum: theory

begin

n: var nat

sum(n): recursive nat = (if n = 0 then 0 else n + sum(n − 1) endif)
measure (λ n: n)

closed form: theorem sum(n) = n × (n + 1)/2

end sum
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Generating Documentation

Verbose proof for closed form.

closed form:

{1} ∀ (n: nat): sum(n) = n × (n + 1)/2

Inducting on n on formula 1,

. . .

Expanding the definition of sum,

closed form.2:

{-1} sum(j ′) = j ′ × (j ′ + 1)/2

{1} 1 + sum(j ′) + j ′ = 2 + j ′ + j ′ × j ′ + 2 × j ′/2

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of closed form.2.

Q.E.D.
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PVS Prover Commands

For details, see the “PVS Prover Guide”.

Powerful proving strategies.
Induction proofs: induct-and-simplify.

Combination of induct and repeated simplification.

Simple non-induction proofs: grind.

Definition expansion, arithmetic, equality, quantifier reasoning.

Manual quantifier proofs: skosimp*

Skolemization (skolem!): “let x be arbitrary but fixed”.
Repeated simplification, if necessary starts with skolemization again.

Installing additional rewrite rules for simplification procedures.
Most general: install-rewrites

Install declarations as rewrite rules to be used by grind.

More special: auto-rewrite, auto-rewrite-theory.

Try the high-level proving strategies first.
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PVS Prover Commands

Propositional formula manipulation:
flatten: remove from consequent implications and disjunctions,
from antecedents conjunctions.

Example: to prove A ⇒ B, we assume A and prove B.
No branching: current goal is replaced by single new goal.

split: split in consequent conjunctions and equivalences, in
antecedent disjunctions and implications, split IF in both.

Branching: current goal is decomposed into multiple subgoals.

lift-if: move IF to the top-level.

Example: f (IF p THEN a ELSE b) ; IF p THEN f (a) ELSE f (b).
Often required for further applications of flatten and split.

case: split proof into multiple cases.

Example: to prove A, we prove B ⇒ A and ¬B ⇒ A.
Creative step: human introduces new assumption B.

Typical performed in the middle of a proof.
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PVS Prover Commands

Definition expansion.
expand: expand definition of some function or predicate.

Creative step: human tells to “look into definition”.

Quantifier manipulation.
inst: instantiate universal formula in antecedent or existential
formula in consequent.

Example: We know ∀x : A. Thus we know A[t/x].
inst-cp leaves original formula in goal for further instantiations.
Creative step: human introduces instantiation term t.

Introduction of new knowledge.
lemma: add to antecedent (an instance of) a formula.

Formula declared in some theory is separately proved.
Creative step: human tells which lemma to apply.

extensionality: add to antecedent extensionality axiom for a
particular type.

Axiom describes how to prove the equality of two objects of this type.
Creative step: human tells to switch “object level”.

Here PVS needs human control (but may also use automatic heuristics).
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Arrays as an Abstract Datatype

arrays[elem: TYPE+]: THEORY

BEGIN

arr: TYPE+

new: [nat -> arr]

length: [arr -> nat]

put: [arr, nat, elem -> arr]

get: [arr, nat -> elem]

a, b: VAR arr

n, i, j: VAR nat

e: VAR elem

length1: AXIOM

FORALL(n): length(new(n)) = n

length2: AXIOM

FORALL(a, i, e):

0 <= i AND i < length(a) IMPLIES

length(put(a, i, e)) =

length(a)

get1: AXIOM

FORALL(a, i, e):

0 <= i AND i < length(a) IMPLIES

get(put(a, i, e), i) = e

get2: AXIOM

FORALL(a, i, j, e):

0 <= i AND i < length(a) AND

0 <= j AND j < length(a) AND

i /= j IMPLIES

get(put(a, i, e), j) =

get(a, j)

equality: AXIOM

FORALL(a, b): a = b IFF

length(a) = length(b) AND

FORALL(i):

0 <= i AND i < length(a)

IMPLIES get(a,i) = get(b,i)

END arrays
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An Expected Array Property

test[ elem: TYPE+ ]: THEORY

BEGIN

IMPORTING arrays[elem]

a: VAR arr

i, j: VAR nat

e, e1, e2: VAR elem

commutes: LEMMA

FORALL(a, i, j, e):

0 <= i AND i < length(a) AND

0 <= j AND j < length(a) AND

i /= j IMPLIES

put(put(a, i, e1), j, e2) =

put(put(a, j, e2), i, e1)

END test
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Proving the Property commutes

Only manual insertion of case distinctions necessary.
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Arrays as Functions

arrays[elem: TYPE+]: THEORY

BEGIN

arr: TYPE = [ nat, [nat -> elem] ]

a,b: VAR arr

n, i, j: VAR nat

e: VAR elem

anyelem: elem

anyarray: arr

new (n): arr =

(n, (lambda n: anyelem))

length(a): nat = a‘1

put(a, i, e): arr =

IF i < a‘1

THEN (a‘1, a‘2 WITH [(i) := e])

ELSE anyarray ENDIF

get(a, i): elem =

IF i < a‘1

THEN a‘2(i) ELSE anyelem ENDIF

length1: THEOREM ...

length2: THEOREM ...

get1: THEOREM ...

get2: THEOREM ...

equality: THEOREM

FORALL(a, b): a = b IFF

length(a) = length(b) AND

FORALL(i):

0 <= i AND i < length(a)

IMPLIES get(a,i) = get(b,i)

unassigned: AXIOM

FORALL(a, i):

i >= a‘1

IMPLIES a‘2(i) = anyelem

END arrays
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Proving the Properties

length1 and length2:

get1 and get2:

commutes:

Completely automatic.
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Proving the Properties: equality
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Proving the Properties: equality

Manual proof control for one direction of the proof; this direction
depends on additional lemma.
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Linear Search

{olda = a ∧ oldx = x ∧ n = length(a) ∧ i = 0 ∧ r = −1}
while i < n ∧ r = −1 do

if a[i] = x

then r := i

else i := i + 1
{a = olda ∧

((r = −1 ∧ ∀i : 0 ≤ i < length(a) ⇒ a[i] 6= x) ∨
(0 ≤ r < length(a) ∧ a[r ] = x ∧ ∀i : 0 ≤ i < r : a[i] 6= x))}

By application of the rules of the Hoare calculus, we generate the
necessary verification conditions.
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Verification Conditions

Input :⇔ olda = a ∧ oldx = x ∧ n = length(a) ∧ i = 0 ∧ r = −1
Output :⇔ a = olda ∧

((r = −1 ∧ ∀i : 0 ≤ i < length(a) ⇒ a[i] 6= x) ∨
(0 ≤ r < length(a) ∧ a[r ] = x ∧ ∀i : 0 ≤ i < r : a[i] 6= x))

Invariant :⇔ olda = a ∧ oldx = x ∧ n = length(a) ∧
0 ≤ i ≤ n ∧ ∀j : 0 ≤ j < i ⇒ a[j] 6= x ∧
(r = −1 ∨ (r = i ∧ i < n ∧ a[r ] = x))

A :⇔ Input ⇒ Invariant

B1 :⇔ Invariant ∧ i < n ∧ r = −1 ∧ a[i] = x ⇒ Invariant[i/r ]
B2 :⇔ Invariant ∧ i < n ∧ r = −1 ∧ a[i] 6= x ⇒ Invariant[i + 1/i]
C :⇔ Invariant ∧ ¬(i < n ∧ r = −1) ⇒ Output

The verification conditions A, B1, B2, and C have to be proved.
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Specifying the Verification Conditions

linsearch[elem: TYPE+]: THEORY

BEGIN

IMPORTING arrays[elem]

a, olda: arr

x, oldx: elem

i, n: nat

r: int

j: VAR nat

Input: bool =

olda = a AND oldx = x AND n = length(a) AND i = 0 AND r = -1

Output: bool =

a = olda AND

((r = -1 AND

(FORALL(j): 0 <= j AND j < length(a) IMPLIES get(a,j) /= x)) OR

(0 <= r AND r < length(a) AND get(a,r) = x AND

(FORALL(j): 0 <= j AND j < r IMPLIES get(a,j) /= x)))
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Specifying the Verification Conditions

Invariant(a: arr, x: elem, i: nat, n: nat, r: int): bool =

olda = a AND oldx = x AND n = length(a) AND

0 <= i AND i <= n AND

(FORALL (j): 0 <= j AND j < i IMPLIES get(a,j) /= x) AND

(r = -1 OR (r = i AND i < n AND get(a,r) = x))

A: THEOREM

Input IMPLIES Invariant(a, x, i, n, r)

B1: THEOREM

Invariant(a, x, i, n, r) AND i < n AND r = -1 AND get(a,i) = x

IMPLIES Invariant(a, x, i, n, i)

B2: THEOREM

Invariant(a, x, i, n, r) AND i < n AND r = -1 AND get(a,i) /= x

IMPLIES Invariant(a, x, i+1, n, r)

C: THEOREM

Invariant(a, x, i, n, r) AND NOT(i < n AND r = -1)

IMPLIES Output

END linsearch

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 36/41



Proving the Verification Conditions: A/B1

The simple ones.
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Proving the Verification Conditions: B2
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Proving the Verification Conditions: C
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Summary

So what does this experience show us?

Parts of a verification proof can be handled quite automatically:

Those that depend on skolemization, propositional simplification,
expansion of definitions, rewriting, and linear arithmetic only.
Manual case splits may be necessary.

More complex proofs require manual control.

Manual instantiation of universally quantified formulas.
Manual application of additional lemmas.
Proofs of existential formulas (not shown).

PVS can do the essentially simple but usually tedious parts of the proof;
the human nevertheless has to provide the creative insight.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 40/41



Other Proving Systems

Coq: http://coq.inria.fr
LogiCal project, INRIA, France.
Formal proof management system (aka “proof assistant”).
“Calculus of inductive constructions” as logical framework.
Decision procedures, tactics support for interactive proof development.

Isabelle/HOL: http://isabelle.in.tum.de
University of Cambridge and Technical University Munich.
Isabelle: generic theorem proving environment (aka “proof assistant”).
Isabelle/HOL: instance that uses higher order logic as framework.
Decisions procedures, tactics for interactive proof development.

Theorema: http://www.theorema.org
Research Institute for Symbolic Computation (RISC), Linz.
Extension of computer algebra system Mathematica by support for
mathematical proving.
Combination of generic higher order predicate logic prover with
various special provers/solvers that call each other.
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