Hoare Calculus and Predicate Transformers

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.uni-linz.ac.at

The Hoare Calculus

Calculus for reasoning about imperative programs.

- “Hoare triple”: \{P\} c \{Q\}
 - Logical propositions P and Q, program command c.
 - The Hoare triple is itself a logical proposition.
 - The Hoare calculus gives rules for constructing true Hoare triples.
- Partial correctness interpretation of \{P\} c \{Q\}:
 - “If c is executed in a state in which P holds, then it terminates in a state in which Q holds unless it aborts or runs forever.”
 - Program does not produce wrong result.
 - But program also need not produce any result.
 - Abortion and non-termination are not ruled out.
- Total correctness interpretation of \{P\} c \{Q\}:
 - “If c is executed in a state in which P holds, then it terminates in a state in which Q holds.
 - Program produces the correct result.

We will use the partial correctness interpretation for the moment.

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers
3. Partial Correctness of Loop Programs
4. Total Correctness of Loop Programs
5. Abortion
6. Procedures

General Rules

\[
\begin{align*}
P & \Rightarrow Q \\
\{P\} & \{Q\}
\end{align*}
\]

\[
\begin{align*}
P & \Rightarrow P' \\
\{P\} & c \{Q'\} \\
Q' & \Rightarrow Q
\end{align*}
\]

- Logical derivation: \[A_1 \ A_2 \]
 - Forward: If we have shown \(A_1\) and \(A_2\), then we have also shown \(B\).
 - Backward: To show \(B\), it suffices to show \(A_1\) and \(A_2\).
- Interpretation of above sentences:
 - To show that, if \(P\) holds in a state, then \(Q\) holds in the same state (no command is executed), it suffices to show \(P\) implies \(Q\).
 - Hoare triples are ultimately reduced to classical logic.
 - To show that, if \(P\) holds, then \(Q\) holds after executing \(c\), it suffices to show this for a \(P'\) weaker than \(P\) and a \(Q'\) stronger than \(Q\).
 - Precondition may be weakened, postcondition may be strengthened.
Special Commands

Commands modeling “emptiness” and abortion.

\[
\{ P \} \text{skip} \{ P \} \quad \{ \text{true} \} \text{abort} \{ \text{false} \}
\]

- The **skip** command does not change the state; if \(P \) holds before its execution, then \(P \) thus holds afterwards as well.
- The **abort** command aborts execution and thus trivially satisfies partial correctness.
- Axiom implies \(\{ P \} \text{abort} \{ Q \} \) for arbitrary \(P, Q \).

Useful commands for reasoning and program transformations.

Scalar Assignments

Decomposition of \(Q[e/x] \) . . . \(Q \) where every free occurrence of \(x \) is replaced by \(e \).

- **Syntax**
 - Variable \(x \), expression \(e \).
 - \(Q[e/x] \) . . . \(Q \)

- **Interpretation**
 - To make sure that \(Q \) holds for \(x \) after the assignment of \(e \) to \(x \), it suffices to make sure that \(Q \) holds for \(e \) before the assignment.
 - **Partial correctness**
 - Evaluation of \(e \) may abort.

\[
\begin{align*}
\{ x + 3 < 5 \} & \quad x := x + 3 \quad \{ x < 5 \} \\
\{ x < 2 \} & \quad x := x + 3 \quad \{ x < 5 \}
\end{align*}
\]

Array Assignments

- An array is modelled as a function \(a : I \rightarrow V \)
 - Index set \(I \), value set \(V \).
 - \(a[i] = e \ldots a \) holds at index \(i \) the value \(e \).
 - **Updated array** \(a[i] \mapsto e \)
 - Array that is constructed from \(a \) by mapping index \(i \) to value \(e \).
 - Axioms (for all \(a : I \rightarrow V, i, j \in I, e \in V \)):
 - \(i = j \Rightarrow a[i] \mapsto e[j] = e \)
 - \(i \neq j \Rightarrow a[i] \mapsto e[j] = a[j] \)
 - \(a[i] \mapsto e[1] > 0 \) \(a[i] := x \quad \{ a[1] > 0 \} \)
 - \((i = 1 \Rightarrow x > 0) \wedge (i \neq 1 \Rightarrow a[1] > 0) \) \(a[i] := x \quad \{ a[1] > 0 \} \)

Index violations and pointer semantics of arrays not yet considered.

Command Sequences

Decomposition of \(Q[a[i \mapsto e]/a] \) . . . \(Q \)

- **Syntax**
 - \(\{ P \} c_1 \{ R_1 \} \quad R_1 \Rightarrow R_2 \quad \{ R_2 \} c_2 \{ Q \} \)

- **Interpretation**
 - To show that, if \(P \) holds before the execution of \(c_1; c_2 \), then \(Q \) holds afterwards, it suffices to show for some \(R_1 \) and \(R_2 \) with \(R_1 \Rightarrow R_2 \) that
 - if \(P \) holds before \(c_1 \), that \(R_1 \) holds afterwards, and that
 - if \(R_2 \) holds before \(c_2 \), then \(Q \) holds afterwards.
 - **Problem:** find suitable \(R_1 \) and \(R_2 \)
 - Easy in many cases (see later).

\[
\begin{align*}
\{ x + y - 1 > 0 \} & \quad y := y - 1 \quad \{ x + y > 0 \} \quad \{ x + y > 0 \} \quad x := x + y \quad \{ x > 0 \} \\
\{ x + y - 1 > 0 \} & \quad y := y - 1 \quad \{ x + y > 0 \} \quad x := x + y \quad \{ x > 0 \}
\end{align*}
\]
Conditionals

\[
\begin{align*}
\{P \land b\} & \ c_1 \ \{Q\} \ \{P \land \neg b\} \ c_2 \ \{Q\} \\
\{P\} & \ \text{if } b \ \text{then } c_1 \ \text{else } c_2 \ \{Q\}
\end{align*}
\]

- Interpretation
 - To show that, if \(P\) holds before the execution of the conditional, then \(Q\) holds afterwards,
 - it suffices to show that the same is true for each conditional branch, under the additional assumption that this branch is executed.

\[
\begin{align*}
\{x \neq 0 \land x \geq 0\} & \ y := x & \{y > 0\} \ \{x \neq 0 \land x \geq 0\} & \ y := -x & \{y > 0\} \\
\{x \neq 0\} & \ \text{if } x \geq 0 \ \text{then } y := x \ \text{else } y := -x & \{y > 0\}
\end{align*}
\]

Backward Reasoning

Implication of rule for command sequences and rule for assignments:

\[
\begin{align*}
\{P\} & \ c \ \{Q[e/x]\} \\
\{P\} & \ c; x := e \ \{Q\}
\end{align*}
\]

- Interpretation
 - If the last command of a sequence is an assignment, we can remove the assignment from the proof obligation.
 - By multiple application, assignment sequences can be removed from the back to the front.

\[
\begin{align*}
\{P\} & \ x := x+1; \ x := x+1; \ x := x+1; \ {x + 1 = 5} \\
y := 2 \times x; \ y := 2 \times x; \ {x + 2 \times x = 15} & \ \Rightarrow \ {x + 3 \times x = 15} & \ \Rightarrow \ {x = 5}
\end{align*}
\]

Weakest Preconditions

A calculus for “backward reasoning”.

- Predicate transformer \(wp\)
 - Function “\(wp\)” that takes a command \(c\) and a postcondition \(Q\) and returns a precondition.
 - Read \(wp(c, Q)\) as “the weakest precondition of \(c\) w.r.t. \(Q\)”.
 - \(wp(c, Q)\) is a precondition for \(c\) that ensures \(Q\) as a postcondition.
 - Must satisfy \(\{wp(c, Q)\} \ c \ \{Q\}\).
 - \(wp(c, Q)\) is the weakest such precondition.
 - Take any \(P\) such that \(\{P\} \ c \ \{Q\}\).
 - Then \(P \Rightarrow wp(P, Q)\).
 - Consequence: \(\{P\} \ c \ \{Q\} \ \text{iff } (P \Rightarrow wp(c, Q))\)
 - We want to prove \(\{P\} \ c \ \{Q\}\).
 - We may prove \(P \Rightarrow wp(c, Q)\) instead.

Verification is reduced to the calculation of weakest preconditions.
Weakest Preconditions

The weakest precondition of each program construct.

\[
\begin{align*}
wp(\text{skip}, Q) & \Leftrightarrow Q \\
wp(\text{abort}, Q) & \Leftrightarrow \text{true} \\
wp(x := e, Q) & \Leftrightarrow Q[e/x] \\
wp(c_1; c_2, Q) & \Leftrightarrow \wp(c_1, \wp(c_2, Q)) \\
wp(\text{if } b \text{ then } c_1 \text{ else } c_2, Q) & \Leftrightarrow (\Leftrightarrow b \Rightarrow \wp(c_1, Q)) \land (\Leftrightarrow \neg b \Rightarrow \wp(c_2, Q))
\end{align*}
\]

Alternative formulation of a program calculus.

Strongest Postconditions

A calculus for forward reasoning.

- **Predicate transformer** \(sp \)
 - Function "sp" that takes a precondition \(P \) and a command \(c \) and returns a postcondition.
 - Read \(sp(P, c) \) as "the strongest postcondition of \(c \) w.r.t. \(P \)."
 - \(sp(P, c) \) is a postcondition for \(c \) that is ensured by precondition \(P \).
 - Must satisfy \(\{ P \} \ c \ { sp(P, c) } \).
 - \(sp(P, c) \) is the strongest such postcondition.
 - Take any \(P, Q \) such that \(\{ P \} \ c \ { Q } \).
 - Then \(sp(P, c) \Rightarrow Q \).
 - **Consequence:** \(\{ P \} \ c \ { Q } \) iff \(sp(P, c) \Rightarrow Q \).
 - We want to prove \(\{ P \} \ c \ { Q } \).
 - We may prove \(sp(P, c) \Rightarrow Q \) instead.

Verification is reduced to the calculation of strongest postconditions.

Forward Reasoning

Sometimes, we want to derive a postcondition from a given precondition.

\[
\{ P \} \ x := e \begin{cases} \exists x_0 : P[x_0/x] \land x = e[x_0/x] \end{cases}
\]

Forward Reasoning

- **What is the maximum we know about the post-state of an assignment \(x := e \), if the pre-state satisfies \(P \)?**
- We know that \(P \) holds for some value \(x_0 \) (the value of \(x \) in the pre-state) and that \(x \) equals \(e[x_0/x] \).

\[
\begin{align*}
\{ x \geq 0 \land y = a \} \\
x := x + 1 \\
\{ \exists x_0 : x_0 \geq 0 \land y = a \land x = x_0 + 1 \} \\
(\Leftrightarrow (\exists x_0 : x_0 \geq 0 \land x = x_0 + 1) \land y = a) \\
(\Leftrightarrow x > 0 \land y = a)
\end{align*}
\]

The use of predicate transformers is an alternative/supplement to the Hoare calculus; this view is due to Dijkstra.
1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers
3. Partial Correctness of Loop Programs
4. Total Correctness of Loop Programs
5. Abortion
6. Procedures

The Hoare Calculus and Loops

\[\{\text{true}\} \text{ loop } \{\text{false}\} \]

\[P \Rightarrow I \quad \{I \land b\} \ c \{I\} \quad \{I \land \lnot b\} \Rightarrow Q \]

\[\{P\} \text{ while } b \text{ do } c \{Q\} \]

- **Interpretation:**
 - The loop command does not terminate and thus trivially satisfies partial correctness.
 - Axiom implies \(\{P\} \text{ loop } \{Q\} \) for arbitrary \(P, Q \).
 - To show that, if before the execution of a while-loop the property \(P \) holds, after its termination the property \(Q \) holds, it suffices to show for some property \(I \) (the loop invariant) that
 - \(I \) holds before the loop is executed (i.e. that \(P \) implies \(I \)),
 - if \(I \) holds when the loop body is entered (i.e. if also \(b \) holds), that after the execution of the loop body \(I \) still holds,
 - when the loop terminates (i.e. if \(b \) does not hold), \(I \) implies \(Q \).

- **Problem:** find appropriate loop invariant \(I \).
 - Strongest relationship between all variables modified in loop body.

Example

\[I \iff (n \geq 0 \Rightarrow 1 \leq i \leq n + 1) \land s = \sum_{j=1}^{i-1} j \]

\[\{i = 1 \land s = 0\} \Rightarrow I \]

\[\{I \land i \leq 0\} \ s := s + i; i := i + 1 \ \{I\} \]

\[\{I \land i \leq n\} \Rightarrow s = \sum_{j=1}^{i} j \]

\[\{i = 1 \land s = 0\} \text{ while } i \leq n \text{ do } (s := s + i; i := i + 1) \ \{s = \sum_{j=1}^{i} j\} \]

The invariant captures the "essence" of a loop; only by giving its invariant, a true understanding of a loop is demonstrated.

Practical Aspects

We want to verify the following program:

\[\{P\} \ c_1; \text{ while } b \text{ do } c; c_2 \ \{Q\} \]

- Assume \(c_1 \) and \(c_2 \) do not contain loop commands.
- It suffices to prove
 \[\{\text{sp}(P, c_1)\} \text{ while } b \text{ do } c \ \{\text{wp}(c_2, Q)\} \]

Verification of loops is the core of most program verifications.
Weakest Liberal Preconditions for Loops

\[wp(\text{loop}, Q) \Leftrightarrow \text{true} \]
\[wp(\text{while } b \text{ do } c, Q) \Leftrightarrow \forall i \in \mathbb{N} : L_i(Q) \]

- **Interpretation**
 - Weakest precondition that ensures that loops stops in a state satisfying \(Q \), unless it aborts or runs forever.
- **Infinite sequence of predicates \(L_i(Q) \):**
 - Weakest precondition that ensures that loops runs after less than \(i \) iterations in a state satisfying \(Q \), unless it aborts or runs forever.
- **Alternative view:** \(L_i(Q) \Leftrightarrow wp(\text{if } i, Q) \)

 \[
 \text{if}_0 := \text{loop} \\
 \text{if}_{i+1} := \text{if } b \text{ then } (c; \text{if}_i)
 \]

Weakest Liberal Preconditions for Loops

- **Sequence \(L_i(Q) \) is monotonically increasing in strength:**
 - \(\forall i \in \mathbb{N} : L_{i+1}(Q) \Rightarrow L_i(Q) \).
- The weakest precondition is the "lowest upper bound":
 - \(wp(\text{while } b \text{ do } c, Q) \Rightarrow \forall i \in \mathbb{N} : L_i(Q) \).
 - \(\forall P : (P \Rightarrow \forall i \in \mathbb{N} : L_i(Q)) \Rightarrow (P \Rightarrow wp(\text{while } b \text{ do } c, Q)) \).
- We can only compute weaker approximation \(L_i(Q) \).
 - \(wp(\text{while } b \text{ do } c, Q) \Rightarrow L_i(Q) \).
- We want to prove \(\{ P \} \text{ while } b \text{ do } c \{ Q \} \).
 - This is equivalent to proving \(P \Rightarrow wp(\text{while } b \text{ do } c, Q) \).
 - Thus \(P \Rightarrow L_i(Q) \) must hold as well.
- If we can prove \(\neg(P \Rightarrow L_i(Q)) \), . . .
 - \(\{ P \} \text{ while } b \text{ do } c \{ Q \} \) does not hold.
- If we fail, we may try the easier proof \(\neg(P \Rightarrow L_{i+1}(Q)) \).

Falsification is possible by use of approximation \(L_i \), but verification is not.

Example

\[wp(\text{while } i < n \text{ do } i := i + 1, Q) \]

\[
L_0(Q) \Leftrightarrow \text{true} \\
L_1(Q) \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, Q)) \\
L_2(Q) \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, i < n \Rightarrow Q[i + 1/i])) \\
L_3(Q) \Leftrightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, i < n \Rightarrow Q[i + 1/i]) \land (i + 1 < n \Rightarrow Q[i + 2/i])))
\]

- **1. The Hoare Calculus for Non-Loop Programs**
- **2. Predicate Transformers**
- **3. Partial Correctness of Loop Programs**
- **4. Total Correctness of Loop Programs**
- **5. Abortion**
- **6. Procedures**
Total Correctness of Loops

Hoare rules for loop and while are replaced as follows:

\[
P \Rightarrow \{ I \land b \Rightarrow t > 0 \} \land b \Rightarrow t > 0
\]

\[
\{ \text{false}\} \text{ loop } \{ \text{false}\}
\]

\[
\{ I \land t < N \} \land t < N
\]

\[
\{ P \} \text{ while } b \text{ do } c \{ Q \}
\]

- New interpretation of \(\{ P \} \) \(\Rightarrow \) \(\{ Q \} \).
 - If execution of \(c \) starts in a state where \(P \) holds, then execution terminates in a state where \(Q \) holds, unless it aborts.
 - Non-termination is ruled out, abortion not (yet).
 - The loop command thus does not satisfy total correctness.

- Termination term \(t \).
 - Denotes a natural number before and after every loop iteration.
 - If \(t = N \) before an iteration, then \(t < N \) after the iteration.
 - Consequently, if term denotes zero, loop must terminate.

Instead of the natural numbers, any well-founded ordering may be used for the domain of \(t \).

Weakest Preconditions for Loops

Example

\[
I \Rightarrow (n \geq 0 \Rightarrow 1 \leq i \leq n + 1) \land s = \sum_{j=1}^{i-1} j
\]

\[
(i = 1 \land s = 0) \Rightarrow I \land i \leq n \Rightarrow n - i + 1 > 0
\]

\[
\{ I \land i \leq 0 \land n - i + 1 = N \} s := s + i; i := i + 1 \{ I \land n - i + 1 < N \}
\]

\[
(1 \land i \leq n) \Rightarrow s = \sum_{j=1}^{n-1} j
\]

\[
\{ i = 1 \land s = 0 \} \text{ while } i \leq n \text{ do } (s := s + i; i := i + 1) \{ s = \sum_{j=1}^{n} j \}
\]

In practice, termination is easy to show (compared to partial correctness).

Example

\[
\text{wp}(\text{while } i < n \text{ do } i := i + 1, Q)
\]

\[
L_0(Q) : \Rightarrow \text{false}
\]

\[
L_1(Q) : \Rightarrow (i \not< n) \land (i < n \Rightarrow \text{wp}(i := i + 1, L_0(Q)))
\]

\[
\{ i \not< n \land Q \}
\]

\[
L_2(Q) : \Rightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow \text{wp}(i := i + 1, L_1(Q)))
\]

\[
\{ i \not< n \Rightarrow Q \}
\]

\[
L_3(Q) : \Rightarrow (i \not< n \Rightarrow Q) \land (i < n \Rightarrow \text{wp}(i := i + 1, L_2(Q)))
\]

\[
\{ i \not< n \Rightarrow Q \} \land
\]

\[
(i < n \Rightarrow ((i + 1 \not< n \Rightarrow Q[i + 1/i]) \land (i + 1 < n \Rightarrow (i + 2 \not< n \land Q[i + 2/i])))
\]

\[
\ldots
\]
Weakest Preconditions for Loops

- Sequence $L_i(Q)$ is now monotonically decreasing in strength:
 - $\forall i \in \mathbb{N}: L_i(Q) \Rightarrow L_{i+1}(Q)$.

- The weakest precondition is the “greatest lower bound”:
 - $(\forall i \in \mathbb{N}: Q) \Rightarrow \text{wp(while } b \text{ do } c, Q)$.
 - $\forall P: ((\forall i \in \mathbb{N}: L_i(Q)) \Rightarrow P) \Rightarrow (\text{wp(while } b \text{ do } c, Q) \Rightarrow P)$.

- We can only compute a stronger approximation $L_i(Q)$.
 - $L_i(Q) \Rightarrow \text{wp(while } b \text{ do } c, Q)$.

- We want to prove $\{P\} c \{Q\}$.
 - It suffices to prove $P \Rightarrow \text{wp(while } b \text{ do } c, Q)$.
 - It thus also suffices to prove $P \Rightarrow L_i(Q)$.
 - If proof fails, we may try the easier proof $P \Rightarrow L_{i+1}(Q)$

Verifications are typically not successful with finite approximation of weakest precondition.

Abortion

New rules to prevent abortion.

\[
\begin{align*}
\{\text{false}\} & \text{ abort } \{\text{true}\} \\
\{Q[e/x] \land D(e)\} & \text{ x := e } \{Q\} \\
\{Q[a[i \rightarrow e]/a] \land D(e) \land 0 \leq i < \text{length}(a)\} & a[i] := e \{Q\}
\end{align*}
\]

- New interpretation of $\{P\} c \{Q\}$.
 - If execution of c starts in a state, in which property P holds, then it does not abort and eventually terminates in a state in which Q holds.

- Sources of abortion.
 - Division by zero.
 - Index out of bounds exception.

\[D(e)\] makes sure that every subexpression of e is well defined.

Definedness of Expressions

- $D(0) :\leftrightarrow \text{true}$.
- $D(1) :\leftrightarrow \text{true}$.
- $D(x) :\leftrightarrow \text{true}$.
- $D(a[i]) :\leftrightarrow D(i) \land 0 \leq i < \text{length}(a)$.
- $D(e_1 + e_2) :\leftrightarrow D(e_1) \land D(e_2)$.
- $D(e_1 - e_2) :\leftrightarrow D(e_1) \land D(e_2) \land e_2 \neq 0$.
- $D(\text{true}) :\leftrightarrow \text{true}$.
- $D(\text{false}) :\leftrightarrow \text{true}$.
- $D(\neg b) :\leftrightarrow D(b)$.
- $D(b_1 \land b_2) :\leftrightarrow D(b_1) \land D(b_2)$.
- $D(b_1 \lor b_2) :\leftrightarrow D(b_1) \lor D(b_2)$.
- $D(e_1 < e_2) :\leftrightarrow D(e_1) \land D(e_2)$.
- $D(e_1 \leq e_2) :\leftrightarrow D(e_1) \land D(e_2)$.
- $D(e_1 > e_2) :\leftrightarrow D(e_1) \land D(e_2)$.
- $D(e_1 \geq e_2) :\leftrightarrow D(e_1) \land D(e_2)$.

Assumes that expressions have already been type-checked.
Abortion

Slight modification of existing rules.

\[
\begin{align*}
&\{ P \land b \land D(b) \} \ x_1 \ \{ Q \} \\
&\{ P \} \ \text{if} \ b \ \text{then} \ x_1 \ \text{else} \ x_2 \ \{ Q \}
\end{align*}
\]

\[
\begin{align*}
&\{ P \land b \land D(b) \} \ x_3 \ \{ Q \} \\
&\{ P \} \ \text{if} \ b \ \text{then} \ x_3 \ \text{else} \ x_2 \ \{ Q \}
\end{align*}
\]

\[
\begin{align*}
P &\Rightarrow I \
I &\Rightarrow (T \in \mathbb{N} \land D(b)) \\
\{ I \land b \land T = t \} \ x_1 \ \{ I \land T < t \} \ (I \land \neg b) &\Rightarrow Q \\
\{ P \} \ \text{while} \ b \ \text{do} \ x_1 \ \{ Q \}
\end{align*}
\]

Expressions must be defined in any context.

Similar modifications of weakest preconditions.

\[
\begin{align*}
\wp(\text{abort}, Q) &\Leftrightarrow \text{false} \\
\wp(x := e, Q) &\Leftrightarrow Q[e/x] \land D(e) \\
\wp(\text{if} \ b \ \text{then} \ c \ \text{else} \ c, Q) &\Leftrightarrow \\
&\text{D}(b) \land (b \Rightarrow \wp(c_1, Q)) \land (\neg b \Rightarrow \wp(c_2, Q))
\end{align*}
\]

\[
\begin{align*}
\wp(\text{if} \ b \ \text{then} \ c, Q) &\Leftrightarrow \\
&\text{D}(b) \land (b \Rightarrow \wp(c, Q)) \land (\neg b \Rightarrow Q)
\end{align*}
\]

\[
\begin{align*}
\wp(\text{while} \ b \ \text{do} \ c, Q) &\Leftrightarrow \\
&\exists i \in \mathbb{N} : L_i(Q)
\end{align*}
\]

wp(\(c, Q\)) now makes sure that the execution of \(c\) does not abort but eventually terminates in a state in which \(Q\) holds.

Procedure Specifications

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers
3. Partial Correctness of Loop Programs
4. Total Correctness of Loop Programs
5. Abortion
6. Procedures

1. The Hoare Calculus for Non-Loop Programs
2. Predicate Transformers
3. Partial Correctness of Loop Programs
4. Total Correctness of Loop Programs
5. Abortion
6. Procedures
Procedure Calls

First let us give an alternative (equivalent) version of the assignment rule.

- Original:
 \[
 \{D(e) \land Q[e/x]\} \\
 x := e \\
 \{Q\}
 \]

- Alternative:
 \[
 \{D(e) \land \forall x' : x' = e \Rightarrow Q[x'/x]\} \\
 x := e \\
 \{Q\}
 \]

The new value of \(x\) is given name \(x'\) in the precondition.

Corresponding Predicate Transformers

- \(wp(p(e, x, y), Q) \iff\)
 \[
 D(e) \land Pre[e/i, x/t] \land \\
 \forall x', y', f' : Post[e/i, x/t, y'/o, f/f_0, f'/f] \Rightarrow Q[x'/x, y'/y, f'/f]
 \]

- \(sp(P, p(e, x, y)) \iff\)
 \[
 \exists x_0, y_0, f_0 : P[x_0/x, y_0/y, f_0/f] \land \\
 Post[e[x_0/x, y_0/y, f_0/f]/i, x_0/t, x/t, y/o]
 \]

Explicit naming of old/new values required.

Procedure Calls

From this, we can derive a rule for the correctness of procedure calls.

\[
\{D(e) \land Pre[e/i, x/t] \land \\
\forall x', y', f' : Post[e/i, x/t, y'/o, f/f_0, f'/f] \Rightarrow Q[x'/x, y'/y, f'/f]\} \\
p[e, x, y] \\
\{Q\}
\]

- \(Pre[e/i, x/t]\) refers to the values of the actual arguments \(e\) and \(x\) (rather than to the formal parameters \(i\) and \(t\)).
- \(x', y', f'\) denote the values of the vars \(x\), \(y\), and \(f\) after the call.
- \(Post[\ldots]\) refers to the argument values before and after the call.
- \(Q[x'/x, y'/y, f'/f]\) refers to the argument values after the call.

Modular reasoning: rule only relies on the specification of \(p\), not on its implementation.

Procedure Calls Example

- Procedure specification:
 \[
 \text{global } f \\
 \text{requires } f \geq 0 \land i > 0 \\
 \text{ensures } f_0 = f \cdot i + o \land 0 \leq o < i \\
 \text{dividesF}(i, o)
 \]

- Procedure call:
 \[
 \{f \geq 0 \land f = N \land b \geq 0\} \\
 \text{dividesF}(b + 1, y) \\
 \{f \cdot (b + 1) \leq N < (f + 1) \cdot (b + 1)\}
 \]

- To be ultimately proved:
 \[
 f \geq 0 \land f = N \land b \geq 0 \Rightarrow \\
 D(b + 1) \land f \geq 0 \land b + 1 > 0 \land \\
 \forall y', f' : \\
 f = f' \cdot (b + 1) + y' \land 0 \leq y' < b + 1 \Rightarrow \\
 f' \cdot (b + 1) \leq N < (f' + 1) \cdot (b + 1)
 \]
Not Yet Covered

- Primitive data types.
 - int values are actually finite precision integers.
- More data and control structures.
 - switch, do-while (easy); continue, break, return (more complicated).
 - Records can be handled similar to arrays.
- Recursion.
 - Procedures may not terminate due to recursive calls.
- Exceptions and Exception Handling.
 - Short discussion in the context of ESC/Java2 later.
- Pointers and Objects.
 - Here reasoning gets complicated.
- ...

The more features are covered, the more complicated reasoning becomes.