
Formal Methods in Software Development

Exercise 3 (May 11)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

April 5, 2006

The result is to me submitted to me by May 11 (hard deadline) as a paper
(handed out to me in class) or as a single PDF file (sent to me per email), in
both cases with a cover sheet that contains your name and “Matrikelnummer”.

1 Binary Search (Verification)

Take the Hoare triple

{olda = a∧oldx = x∧ (∀i : 0 ≤ i < length(a)−1 ⇒ a[i] ≤ a[i+1])∧
r = −1 ∧ low = 0 ∧ high = length(a)− 1}

while r = −1 ∧ low ≤ high do
mid := b(low + high)/2c
if a[mid] = x then

r := mid // B1
else if a[mid] < x then

low = mid + 1 // B2
else

high = mid − 1 // B3
end

end
{a = olda ∧ x = oldx ∧

((r = −1 ∧ (∀i : 0 ≤ i < length(a) ⇒ a[i] 6= x)) ∨
(0 ≤ r < length(a) ∧ a[r] = x))}

which describes the core proof obligation for a program that applies the “binary
search” method to determine the index r of an element x in a sorted array a.

1



This Hoare triple can be verified with the help of the following loop invariant
(take your time to understand especially the range conditions on low and high):

olda = a∧ oldx = x∧ (∀i : 0 ≤ i < length(a)− 1 ⇒ a[i] ≤ a[i + 1])∧
−1 ≤ r < length(a) ∧ (r 6= −1 ⇒ a[r] = x) ∧
0 ≤ low ≤ length(a) ∧ −1 ≤ high < length(a) ∧ low ≤ high + 1 ∧
(∀i : 0 ≤ i < length(a) ∧ i < low ⇒ a[i] < x) ∧
(∀i : 0 ≤ i < length(a) ∧ high < i ⇒ x < a[i])

With this information, you can produce the five verification conditions for prov-
ing the partial correctness of the program (one for showing that the input con-
dition implies the invariant, one for showing that the invariant and the negation
of the loop condition implies the output condition, three for showing that the
invariant is preserved for each of the three possible execution paths in the loop
body). Please note that the program term bxc is written in PVS as floor(x/2).
Make sure that your definitions type-check correctly by using the PVS command
tcp (no type checking condition should remain unproved).

Your task is now to verifiy these five conditions in PVS in the style of the proof
of the “linear search” algorithm presented in class. For this purpose, write a
PVS theory of the following structure

binarysearch: THEORY
BEGIN

IMPORTING arrays[int]

// program variables
a, olda: arr
x, oldx: int
low, high, mid: int
r: int

// quantified variables
i, j: VAR nat
...

END binarysearch

where the PVS file for theory arrays is posted on the Web site.

Define three predicates Input, Output, and Invariant, where (as shown in
class) Invariant should be parameterized over the program variables. Then
define five formulas A, B1, B2, B3, C describing the five verification conditions
and prove these.

Please note that the program variables denoting indices are declared as int
(r and high might become negative) such that all range restrictions on these
variables have to be explicitly described. The quantified variables however may
be declared as nat such that non-negativeness has not to be stated explicitly.

2



The following hints describe how the five conditions can be proved. The de-
scriptions assume that you have expanded all predicate definitions.

A is a simple quantifier proof that can be performed using split, flatten,
skolem!, assert.

B1 is even simpler than A.

B2 and B3 The proofs of both formulas are very similar. All but one branches
of the proof run through automatically, but this one branch requires your
attention. It needs for its proof an additional lemma

(∀i : 0 ≤ i < length(a)− 1 ⇒ a[i] ≤ a[i + 1]) ⇒
(∀i, j : 0 ≤ i ≤ j < length(a) ⇒ a[i] ≤ a[j]).

Formulate this lemma as an additional formula L (which you need not
prove) and introduce it into the proof by the use of the lemma command.
Then apply the split command on this formula, which gives you one
branch which is trivially fulfilled (because the antecedent of the lemma
is satisfied), and another branch, where the consequent of the lemma is
stated which you can use in the remaining proof. Apart from that, the
proof only requires split, flatten, skolem!, assert, inst.

C requires a case distinction (command case) on r according to the two possible
outcomes of the search. Otherwise it is a straight-forward quantifier proof
which requires split, flatten, skolem!, assert, inst only.

I suggest that you first prove A, B1, and C and then B2 and B3. All proofs
have been checked, thus there is no reason that they should not work for you.
However, if some proof does not work out completely, just submit the partial
proof as your exercise result.

3



2 Binary Search (JML Specification)

Write a JML header specification for the method

class Searching
{

static int binarySearch(int[] a, int x)
{
int low = 0;
int high = a.length-1;
while (low <= high)
{

int mid = (low + high)/2;
if (a[mid] == x) return mid;
if (x > a[mid])

low = mid+1;
else

high = mid-1;
}
return -1;

}
}

which looks in an array a which is sorted in ascending order for a value x and
returns its index r (−1, if x does not occur in a).

Make this specification as strong as possible using the Hoare triple from the
previous exercise as a hint (but also think about extra problems that might
arise in the Java method).

Run your specification through jml and escjava2 and include the output of
these runs in the result of this exercise.

4


