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1. Verification by Computer-Supported Proving

2. Verification by Automatic Model Checking
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A Bit Transmission Protocol

a

r

v RS

x y

var x , y

var v := 0, r := 0, a := 0

S: loop
choose x ∈ {0, 1}

1 : v , r := x , 1
2 : wait a = 1

r := 0
3 : wait a = 0

||
R: loop

1 : wait r = 1
y , a := v , 1

2 : wait r = 0
a := 0

Transmit a bit through a wire.
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A (Simplified) Model of the Protocol

State := PC2 × (N2)5

I (p, q, x , y , v , r , a) :⇔ p = q = 1 ∧ x ∈ N2 ∧ v = r = a = 0.

R(〈p, q, x , y , v , r , a〉, 〈p′
, q′

, x ′
, y ′

, v ′
, r ′, a′〉) :⇔

S1(. . .) ∨ S2(. . .) ∨ S3(. . .) ∨ R1(. . .) ∨ R2(. . .).

S1(〈p, q, x , y , v , r , a〉, 〈p′
, q′

, x ′
, y ′

, v ′
, r ′, a′〉) :⇔

p = 1 ∧ p′ = 2 ∧ v ′ = x ∧ r ′ = 1 ∧
q′ = q ∧ x ′ = x ∧ y ′ = y ∧ v ′ = v ∧ a′ = a.

S2(〈p, q, x , y , v , r , a〉, 〈p′
, q′

, x ′
, y ′

, v ′
, r ′, a′〉) :⇔

p = 2 ∧ p′ = 3 ∧ a = 1 ∧ r ′ = 0 ∧
q′ = q ∧ x ′ = x ∧ y ′ = y ∧ v ′ = v ∧ a′ = a.

S3(〈p, q, x , y , v , r , a〉, 〈p′
, q′

, x ′
, y ′

, v ′
, r ′, a′〉) :⇔

p = 3 ∧ p′ = 1 ∧ a = 0 ∧ x ′ ∈ N2 ∧
q′ = q ∧ y ′ = y ∧ v ′ = v ∧ r ′ = r ∧ a′ = a.

R1(〈p, q, x , y , v , r , a〉, 〈p′
, q′

, x ′
, y ′

, v ′
, r ′, a′〉) :⇔

q = 1 ∧ q′ = 2 ∧ r = 1 ∧ y ′ = v ∧ a′ = 1 ∧
p′ = p ∧ x ′ = x ∧ v ′ = v ∧ r ′ = r .

R2(〈p, q, x , y , v , r , a〉, 〈p′
, q′

, x ′
, y ′

, v ′
, r ′, a′〉) :⇔

q = 2 ∧ q′ = 1 ∧ r = 0 ∧ a′ = 0 ∧
p′ = p ∧ x ′ = x ∧ y ′ = y ∧ v ′ = v ∧ r ′ = r .
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A Verification Task

〈I , R〉 |= 2(q = 2 ⇒ y = x)

Invariant(p, . . .) ⇒ (q = 2 ⇒ y = x)

I (p, . . .) ⇒ Invariant(p, . . .)
R(〈p, . . .〉, 〈p′

, . . .〉) ∧ Invariant(p, . . .) ⇒ Invariant(p′
, . . .)

Invariant(p, q, x , y , v , r , a) :⇔
(p = 1 ∨ p = 2 ∨ p = 3) ∧ (q = 1 ∨ q = 2) ∧
(x = 0 ∨ x = 1) ∧ (v = 0 ∨ v = 1) ∧ (r = 0 ∨ r = 1) ∧ (a = 0 ∨ a = 1) ∧
(p = 1 ⇒ q = 1 ∧ r = 0 ∧ a = 0) ∧
(p = 2 ⇒ r = 1) ∧
(p = 3 ⇒ r = 0) ∧
(q = 1 ⇒ a = 0) ∧
(q = 2 ⇒ (p = 2 ∨ p = 3) ∧ a = 1 ∧ y = x) ∧
(r = 1 ⇒ p = 2 ∧ v = x)

The invariant captures the essence of the protocol.
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The Verification Task in PVS

protocol: THEORY

BEGIN

p, q, x, y, v, r, a: nat

p0, q0, x0, y0, v0, r0, a0: nat

S1: bool =

p = 1 AND p0 = 2 AND v0 = x AND r0 = 1 AND

q0 = q AND x0 = x AND y0 = y AND v0 = v AND a0 = a

S2: bool =

p = 2 AND p0 = 3 AND a = 1 AND r0 = 0 AND

q0 = q AND x0 = x AND y0 = y AND v0 = v AND a0 = a

S3: bool =

p = 3 AND p0 = 1 AND a = 0 AND (x0 = 0 OR x0 = 1) AND

q0 = q AND y0 = y AND v0 = v AND r0 = r AND a0 = a

R1: bool =

q = 1 AND q0 = 2 AND r = 1 AND y0 = v AND a0 = 1 AND

p0 = p AND x0 = x AND v0 = v AND r0 = r

R2: bool =

q = 2 AND q0 = 1 AND r = 0 AND a0 = 0 AND

p0 = p AND x0 = x AND y0 = y AND v0 = v AND r0 = r
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The Verification Task in PVS (Contd)

Init: bool =

p = 1 AND q = 1 AND (x = 0 OR x = 1) AND

v = 0 AND r = 0 AND a = 0

Step: bool =

S1 OR S2 OR S3 OR R1 OR R2

Property: bool =

q = 2 => y = x

Invariant(p, q, x, y, v, r, a: nat): bool =

(p = 1 OR p = 2 OR p = 3) AND

(q = 1 OR q = 2) AND

(x = 0 OR x = 1) AND

(v = 0 OR v = 1) AND

(r = 0 OR r = 1) AND

(a = 0 OR a = 1) AND

(p = 1 => q = 1 AND r = 0 AND a = 0) AND

(p = 2 => r = 1) AND

(p = 3 => r = 0) AND

(q = 1 => a = 0) AND

(q = 2 => (p = 2 OR p = 3) AND a = 1 AND y = x) AND

(r = 1 => (p = 2 AND v = x))
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The Verification Task in PVS (Contd’2)

VC0: THEOREM

Invariant(p, q, x, y, v, r, a) => Property

VC1: THEOREM

Init => Invariant(p, q, x, y, v, r, a)

VC2: THEOREM

Step AND Invariant(p, q, x, y, v, r, a) =>

Invariant(p0, q0, x0, y0, v0, r0, a0)

END protocol
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The Proof in PVS
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A Client/Server System

Client system Ci = 〈IC i ,RC i〉.
State := PC × N2 × N2.
Int := {Ri ,Si , Ci}.

IC i (pc, request , answer) :⇔
pc = R ∧ request = 0 ∧ answer = 0.

RC i (l , 〈pc, request , answer〉,
〈pc ′, request ′, answer ′〉) :⇔

(l = Ri ∧ pc = R ∧ request = 0 ∧
pc ′ = S ∧ request ′ = 1 ∧ answer ′ = answer) ∨

(l = Si ∧ pc = S ∧ answer 6= 0 ∧
pc ′ = C ∧ request ′ = request ∧ answer ′ = 0) ∨

(l = Ci ∧ pc = C ∧ request = 0 ∧
pc ′ = R ∧ request ′ = 1 ∧ answer ′ = answer) ∨

(l = REQ i ∧ request 6= 0 ∧
pc ′ = pc ∧ request ′ = 0 ∧ answer ′ = answer) ∨

(l = ANS i ∧
pc ′ = pc ∧ request ′ = request ∧ answer ′ = 1).

Client(ident):

param ident

begin

loop

...

R: sendRequest()

S: receiveAnswer()

C: // critical region

...

sendRequest()

endloop

end Client
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A Client/Server System (Contd)

Server system S = 〈IS ,RS〉.
State := (N3)3 × ({1, 2} → N2)2.
Int := {D1, D2, F ,A1, A2, W }.

IS(given,waiting , sender , rbuffer , sbuffer ) :⇔
given = waiting = sender = 0 ∧
rbuffer (1) = rbuffer (2) = sbuffer (1) = sbuffer (2) = 0.

RS(l , 〈given,waiting , sender , rbuffer , sbuffer〉,
〈given′

,waiting ′
, sender ′, rbuffer ′, sbuffer ′〉) :⇔

∃i ∈ {1, 2} :
(l = Di ∧ sender = 0 ∧ rbuffer (i) 6= 0 ∧
sender ′ = i ∧ rbuffer ′(i) = 0 ∧
U(given, waiting , sbuffer ) ∧
∀j ∈ {1, 2}\{i} : Uj (rbuffer )) ∨

. . .

U(x1, . . . , xn) :⇔ x ′

1 = x1 ∧ . . . ∧ x ′

n = xn.
Uj (x1, . . . , xn) :⇔ x ′

1(j) = x1(j) ∧ . . . ∧ x ′

n(j) = xn(j).

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
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A Client/Server System (Contd’2)

. . .

(l = F ∧ sender 6= 0 ∧ sender = given ∧waiting = 0 ∧
given′ = 0 ∧ sender ′ = 0 ∧
U(waiting , rbuffer , sbuffer)) ∨

(l = A1 ∧ sender 6= 0 ∧ sbuffer (waiting ) = 0 ∧
sender = given ∧ waiting 6= 0 ∧
given′ = waiting ∧ waiting ′ = 0 ∧
sbuffer ′(waiting) = 1 ∧ sender ′ = 0 ∧
U(rbuffer ) ∧
∀j ∈ {1, 2}\{waiting} : Uj (sbuffer )) ∨

(l = A2 ∧ sender 6= 0 ∧ sbuffer (sender ) = 0 ∧
sender 6= given ∧ given = 0 ∧
given′ = sender ∧
sbuffer ′(sender ) = 1 ∧ sender ′ = 0 ∧
U(waiting , rbuffer ) ∧
∀j ∈ {1, 2}\{sender} : Uj (sbuffer )) ∨

. . .

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
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A Client/Server System (Contd’3)

. . .

(l = W ∧ sender 6= 0 ∧ sender 6= given ∧ given 6= 0 ∧
waiting ′ := sender ∧ sender ′ = 0 ∧

U(given, rbuffer , sbuffer )) ∨

∃i ∈ {1, 2} :

(l = REQ i ∧ rbuffer ′(i) = 1 ∧
U(given,waiting , sender , sbuffer ) ∧
∀j ∈ {1, 2}\{i} : Uj (rbuffer )) ∨

(l = ANS i ∧ sbuffer (i) 6= 0 ∧
sbuffer ′(i) = 0 ∧
U(given,waiting , sender , rbuffer ) ∧
∀j ∈ {1, 2}\{i} : Uj (sbuffer )).

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
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A Client/Server System (Contd’4)

State := ({1, 2} → PC) × ({1, 2} → N2)
2 × (N3)

2 × ({1, 2} → N2)
2

I (pc, request, answer , given, waiting , sender , rbuffer , sbuffer) :⇔
∀i ∈ {1, 2} : IC(pc i , requesti , answer i) ∧
IS(given, waiting , sender , rbuffer , sbuffer)

R(〈pc, request, answer , given, waiting , sender , rbuffer , sbuffer〉,
〈pc ′

, request ′, answer ′, given′
, waiting ′

, sender ′, rbuffer ′, sbuffer ′〉) :⇔
(∃i ∈ {1, 2} : RC local (〈pc i , request i , answer i 〉, 〈pc ′

i , request′i , answer ′i 〉) ∧
〈given, waiting , sender , rbuffer , sbuffer〉 =

〈given′
, waiting ′

, sender ′, rbuffer ′, sbuffer ′〉) ∨
(RS local (〈given, waiting , sender , rbuffer , sbuffer〉,

〈given′
, waiting ′

, sender ′, rbuffer ′, sbuffer ′〉) ∧
∀i ∈ {1, 2} : 〈pc i , request i , answer i 〉 = 〈pc ′

i , request′i , answer ′i 〉) ∨
(∃i ∈ {1, 2} : External(i , 〈request i , answer i , rbuffer , sbuffer〉,

〈request′i , answer ′i , rbuffer ′, sbuffer ′〉) ∧
pc = pc ′ ∧ 〈sender , waiting , given〉 = 〈sender ′, waiting ′

, given′〉)
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The Verification Task

〈I ,R〉 |= 2¬(pc1 = C ∧ pc2 = C )

Invariant(pc, request , answer , sender , given,waiting , rbuffer , sbuffer ) :⇔

∀i ∈ {1, 2} :

(pc(i) = C ∨ sbuffer (i) = 1 ∨ answer (i) = 1 ⇒
given = i ∧
∀j : j 6= i ⇒ pc(j) 6= C ∧ sbuffer (j) = 0 ∧ answer (j) = 0) ∧

(pc(i) = R ⇒
sbuffer(i) = 0 ∧ answer (i) = 0 ∧
(i = given ⇔ request(i) = 1 ∨ rbuffer (i) = 1 ∨ sender = i) ∧
(request(i) = 0 ∨ rbuffer (i) = 0)) ∧

(pc(i) = S ⇒
(sbuffer (i) = 1 ∨ answer(i) = 1 ⇒

request(i) = 0 ∧ rbuffer (i) = 0 ∧ sender 6= i) ∧
(i 6= given ⇒

request(i) = 0 ∨ rbuffer (i) = 0)) ∧
(pc(i) = C ⇒

request(i) = 0 ∧ rbuffer(i) = 0 ∧ sender 6= i ∧
sbuffer(i) = 0 ∧ answer (i) = 0) ∧

. . .
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The Verification Task (Contd)

. . .
(sender = 0 ∧ (request(i) = 1 ∨ rbuffer (i) = 1) ⇒

sbuffer(i) = 0 ∧ answer (i) = 0) ∧
(sender = i ⇒

(waiting 6= i) ∧
(sender = given ∧ pc(i) = R ⇒

request(i) = 0 ∧ rbuffer (i) = 0) ∧
(pc(i) = S ∧ i 6= given ⇒

request(i) = 0 ∧ rbuffer (i) = 0) ∧
(pc(i) = S ∧ i = given ⇒

request(i) = 0 ∨ rbuffer (i) = 0)) ∧
(waiting = i ⇒

given 6= i ∧ pc i = S ∧ request i = 0 ∧ rbuffer (i) = 0 ∧
sbuffer i = 0 ∧ answer(i) = 0) ∧

(sbuffer (i) = 1 ⇒
answer(i) = 0 ∧ request(i) = 0 ∧ rbuffer (i) = 0)

As usual, the invariant has been elaborated in the course of the proof.
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The Verification Task in PVS

clientServer: THEORY

BEGIN

% client indices and program counter constants

Index : TYPE+ = { x: nat | x = 1 OR x = 2 } CONTAINING 1

Index0: TYPE+ = { x: nat | x < 3 } CONTAINING 0

PC: TYPE+ = { R, S, C }

% client states

pc, pc0: [ Index -> PC ]

request, request0: [ Index -> bool ]

answer, answer0: [ Index -> bool ]

% server states

given, given0: Index0

waiting, waiting0: Index0

sender, sender0: Index0

rbuffer, rbuffer0: [ Index -> bool ]

sbuffer, sbuffer0: [ Index -> bool ]
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The Verification Task in PVS (Contd)

i, j: VAR Index

% ------------------------------------------------------------------------

% initial state condition

% ------------------------------------------------------------------------

IC(pc: PC, request: bool, answer: bool): bool =

pc = R AND request = FALSE AND answer = FALSE

IS(given: Index0, waiting: Index0, sender: Index0,

rbuffer: [ Index -> bool ], sbuffer: [ Index -> bool ]): bool =

given = 0 AND waiting = 0 AND sender = 0 AND

(FORALL i: rbuffer(i) = FALSE AND sbuffer(i) = FALSE)

Initial: bool =

(FORALL i: IC(pc(i), request(i), answer(i))) AND

IS(given, waiting, sender, rbuffer, sbuffer)
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The Verification Task in PVS (Contd’2)

% ------------------------------------------------------------------------

% transition relation

% ------------------------------------------------------------------------

RC(pc: PC, request: bool, answer: bool,

pc0: PC, request0: bool, answer0: bool): bool =

(pc = R AND request = FALSE AND

pc0 = S AND request0 = TRUE AND answer0 = answer) OR

(pc = S AND answer = TRUE AND

pc0 = C AND request0 = request AND answer0 = FALSE) OR

(pc = C AND request = FALSE AND

pc0 = R and request0 = TRUE AND answer0 = answer)

RS(given: Index0, waiting: Index0, sender: Index0,

rbuffer: [ Index -> bool ], sbuffer: [ Index -> bool ],

given0: Index0, waiting0: Index0, sender0: Index0,

rbuffer0: [ Index -> bool ], sbuffer0: [ Index -> bool ]): bool =

(EXISTS i:

sender = 0 AND rbuffer(i) = TRUE AND

sender0 = i AND rbuffer0(i) = FALSE AND

given = given0 AND waiting = waiting0 AND sbuffer = sbuffer0 AND

FORALL j: j /= i => rbuffer(j) = rbuffer0(j)) OR
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The Verification Task in PVS (Contd’3)

(sender /= 0 AND sender = given AND waiting = 0 AND

given0 = 0 AND sender0 = 0 AND

waiting = waiting0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR

(sender /= 0 AND

sender = given AND waiting /= 0 AND

sbuffer(waiting) = FALSE AND % change order for type-checking

given0 = waiting AND waiting0 = 0 AND

sbuffer0(waiting) = TRUE AND sender0 = 0 AND

rbuffer = rbuffer0 AND

(FORALL j: j /= waiting => sbuffer(j) = sbuffer0(j))) OR

(sender /= 0 AND sbuffer(sender) = FALSE AND

sender /= given AND given = 0 AND

given0 = sender AND

sbuffer0(sender) = TRUE AND sender0 = 0 AND

waiting = waiting0 AND rbuffer = rbuffer0 AND

(FORALL j: j /= sender => sbuffer(j) = sbuffer0(j))) OR

(sender /= 0 AND sender /= given AND given /= 0 AND

waiting0 = sender AND sender0 = 0 AND

given = given0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0)
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The Verification Task in PVS (Contd’4)

External(i: Index,

pc: PC, request: bool, answer: bool,

pc0: PC, request0: bool, answer0: bool,

given: Index0, waiting: Index0, sender: Index0,

rbuffer: [ Index -> bool ], sbuffer: [ Index -> bool ],

given0: Index0, waiting0: Index0, sender0: Index0,

rbuffer0: [ Index -> bool ], sbuffer0: [ Index -> bool ]): bool =

(request = TRUE AND

pc0 = pc AND request0 = FALSE AND answer0 = answer AND

rbuffer0(i) = TRUE AND

given = given0 AND waiting = waiting0 AND sender = sender0 AND

sbuffer = sbuffer0 AND

(FORALL j: j /= i => rbuffer(j) = rbuffer0(j))) OR

(pc0 = pc AND request0 = request AND answer0 = TRUE AND

sbuffer(i) = TRUE AND sbuffer0(i) = FALSE AND

given = given0 AND waiting = waiting0 AND sender = sender0 AND

rbuffer = rbuffer0 AND

(FORALL j: j /= i => sbuffer(j) = sbuffer0(j)))
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The Verification Task in PVS (Contd’5)

Next: bool =

((EXISTS i: RC(pc (i), request (i), answer (i),

pc0(i), request0(i), answer0(i)) AND

(FORALL j: j /= i =>

pc(j) = pc0(j) AND request(j) = request0(j) AND

answer(j) = answer0(j))) AND

given = given0 AND waiting = waiting0 AND sender = sender0 AND

rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR

(RS(given, waiting, sender, rbuffer, sbuffer,

given0, waiting0, sender0, rbuffer0, sbuffer0) AND

(FORALL j: pc(j) = pc0(j) AND request(j) = request0(j) AND

answer(j) = answer0(j))) OR

(EXISTS i:

External(i, pc (i), request (i), answer (i),

pc0(i), request0(i), answer0(i),

given, waiting, sender, rbuffer, sbuffer,

given0, waiting0, sender0, rbuffer0, sbuffer0) AND

(FORALL j: j /= i =>

pc(j) = pc0(j) AND request(j) = request0(j) AND

answer(j) = answer0(j)))

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 22/66



The Verification Task in PVS (Contd’6)

% ------------------------------------------------------------------------

% invariant

% ------------------------------------------------------------------------

Invariant(pc: [Index->PC], request: [Index -> bool],

answer: [Index -> bool],

given: Index0, waiting: Index0, sender: Index0,

rbuffer: [Index -> bool], sbuffer: [Index->bool]): bool =

FORALL i:

(pc(i) = C OR sbuffer(i) = TRUE OR answer(i) = TRUE =>

given = i AND

FORALL j: j /= i =>

pc(j) /= C AND

sbuffer(j) = FALSE AND answer(j) = FALSE) AND

(pc(i) = R =>

sbuffer(i) = FALSE AND answer(i) = FALSE AND

(i /= given =>

request(i) = FALSE AND rbuffer(i) = FALSE AND sender /= i)

(i = given =>

request(i) = TRUE OR rbuffer(i) = TRUE OR sender = i) AND

(request(i) = FALSE OR rbuffer(i) = FALSE)) AND

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 23/66



The Verification Task in PVS (Contd’7)

(pc(i) = S =>

(sbuffer(i) = TRUE OR answer(i) = TRUE =>

request(i) = FALSE AND rbuffer(i) = FALSE AND sender /= i) AND

(i /= given =>

request(i) = FALSE OR rbuffer(i) = FALSE)) AND

(pc(i) = C =>

request(i) = FALSE AND rbuffer(i) = FALSE AND sender /= i AND

sbuffer(i) = FALSE AND answer(i) = FALSE) AND

(sender = 0 AND (request(i) = TRUE OR rbuffer(i) = TRUE) =>

sbuffer(i) = FALSE AND answer(i) = FALSE) AND

(sender = i =>

(sender = given AND pc(i) = R =>

request(i) = FALSE and rbuffer(i) = FALSE) AND

(waiting /= i) AND

(pc(i) = S AND i /= given =>

request(i) = FALSE AND rbuffer(i) = FALSE) AND

(pc(i) = S AND i = given =>

request(i) = FALSE OR rbuffer(i) = FALSE)) AND
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The Verification Task in PVS (Contd’8)

(waiting = i =>

given /= i AND

pc(waiting) = S AND

request(waiting) = FALSE AND rbuffer(waiting) = FALSE AND

sbuffer(waiting) = FALSE AND answer(waiting) = FALSE) AND

(sbuffer(i) = TRUE =>

answer(i) = FALSE AND request(i) = FALSE AND rbuffer(i) = FALSE)

% ------------------------------------------------------------------------

% mutual exclusion proof

% ------------------------------------------------------------------------

MutEx: THEOREM

Invariant(pc, request, answer,

given, waiting, sender, rbuffer, sbuffer) =>

NOT (pc(1) = C AND pc(2) = C)
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The Verification Task in PVS (Contd’9)

% ------------------------------------------------------------------------

% invariance proof

% ------------------------------------------------------------------------

Inv1: THEOREM

Initial =>

Invariant(pc, request, answer,

given, waiting, sender, rbuffer, sbuffer)

Inv2: THEOREM

Invariant(pc, request, answer,

given, waiting, sender, rbuffer, sbuffer) AND Next =>

Invariant(pc0, request0, answer0,

given0, waiting0, sender0, rbuffer0, sbuffer0)

END clientServer
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The Proof in PVS

Proofs that the system
invariant implies the mutual
exclusion property and that
the initial condition implies
the invariant.
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The Proof in PVS

Proof that every system transition preserves the invariant.

(flatten)

(expand* "Invariant0" "Next")

(skolem!)

(split -2)

(flatten)

(auto-rewrite! -2 -3 -4 -5 -6)

(delete -2 -3 -4 -5 -6)

(skolem!)

(expand "RC")

(flatten)

(split -1)

(flatten)

(inst-cp -5 "i!1")

(inst-cp -7 "i!1")

(inst-cp -7 "i!2")

(flatten)

(assert)

(split 2)

(flatten)

(assert)

(split 1)

(assert)

(flatten)

(assert)

(grind)

(skolem!)

(inst-cp -6 "j!1")

(inst-cp -9 "j!1")

(flatten)

(assert)

(case "j!1=i!2")

(assert) (assert)

(flatten)

(assert)

(split 3)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(grind)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(grind)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(grind)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(split 1)

(assert)

(grind)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(split 1)

(flatten)

(assert)

(grind)

(flatten)

(assert)

(grind)

(grind) (grind) (grind) (grind) (grind)

(flatten)

(inst-cp -5 "i!1")

(inst-cp -7 "i!1")

(inst-cp -7 "i!2")

(flatten)

(assert)

(flatten)

(assert)

(split 8)

(flatten)

(assert)

(split 1)

(assert)

(flatten)

(assert)

(skolem!)

(inst-cp -6 "j!1")

(inst-cp -9 "j!1")

(flatten)

(case "j!1=i!2")

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(grind) (grind) (grind) (grind) (grind) (grind) (grind)

(flatten)

(inst-cp -5 "i!1")

(inst-cp -7 "i!1")

(inst-cp -7 "i!2")

(flatten)

(assert)

(flatten)

(assert)

(split 7)

(flatten)

(assert)

(split 1)

(assert)

(flatten)

(assert)

(skolem!)

(inst-cp -6 "j!1")

(inst-cp -9 "j!1")

(flatten)

(assert)

(case "j!1=i!2")

(assert) (assert)

(flatten)

(assert)

(grind) (grind) (grind) (grind) (grind) (grind) (grind)

(flatten)

(inst-cp -2 "i!1")

(inst-cp -4 "i!1")

(flatten)

(assert)

(expand "RS")

(split -1)

(skolem! -1)

(inst-cp -2 "i!2")

(inst-cp -7 "i!2")

(flatten)

(assert)

(flatten)

(assert)

(assert)

(auto-rewrite -1 -3 -4 -5 -6)

(delete -1 -3 -4 -5 -6)

(assert)

(case "i!1=i!2")

(assert)

(assert)

(split 6)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(assert)

(inst-cp -2 "i!1")

(assert)

(split 7)

(flatten)

(split 1)

(assert)

(flatten)

(assert)

(skolem!)

(inst-cp -3 "j!1")

(inst-cp -6 "j!1")

(inst-cp -14 "j!1")

(flatten)

(assert)

(case "j!1=i!2")

(assert) (assert)

(split 3)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(assert)

(split 1)

(case "i!1=given0")

(assert)

(assert)

(typepred "i!1")

(assert)

(grind)

(assert)

(assert)

(grind)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(split 1)

(flatten)

(split 1)

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(split 1)

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(auto-rewrite! ...)

(delete -1 -2 -3 -4 -5 -6 -7)

(assert)

(split 2)

(flatten)

(split 1)

(assert)

(case "given=i!1")

(assert)

(flatten)

(assert)

(grind)

(assert)

(flatten)

(assert)

(skolem!)

(inst-cp -2 "j!1")

(inst-cp -7 "j!1")

(flatten)

(assert)

(split 2)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(assert)

(split 1)

(case "i!1=0")

(assert) (assert)

(assert)

(case "i!1=given")

(assert)

(flatten)

(assert)

(assert)

(assert)

(grind)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(split 1)

(flatten)

(split 1)

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(flatten)

(split 1)

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(assert)

(typepred "i!1")

(assert)

(flatten)

(typepred "i!1")

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(auto-rewrite! -1 -2 -3 -5 -6)

(delete -1 -2 -3 -5 -6)

(inst-cp -2 "i!1")

(case "i!1=waiting")

(assert)

(flatten)

(assert)

(assert)

(skolem!)

(inst-cp -3 "j!1")

(inst-cp -6 "j!1")

(inst-cp -11 "j!1")

(flatten)

(assert)

(case "j!1=i!1")

(propax) (grind)

(assert)

(split 5)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(assert)

(typepred "i!1")

(assert)

(split 1)

(grind) (flatten)

(assert)

(flatten)

(assert)

(flatten)

(split 1)

(flatten)

(split 1)

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(grind) (grind) (typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(grind)

(flatten)

(assert)

(inst-cp -7 "i!1")

(split 4)

(flatten)

(split 1)

(typepred "i!1")

(grind)

(skolem!)

(inst-cp -8 "j!1")

(inst-cp -11 "j!1")

(inst-cp -16 "j!1")

(flatten)

(assert)

(case "sender=i!1")

(assert)

(flatten)

(assert)

(typepred "j!1")

(grind)

(assert)

(case "sender=j!1")

(assert)

(flatten)

(assert)

(assert)

(typepred "i!1")

(grind)

(assert)

(inst-cp -11 "sender")

(inst-cp -19 "sender")

(assert)

(flatten)

(assert)

(grind)

(typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(grind)

(flatten)

(assert)

(auto-rewrite! -1 -2 -3 -4 -5)

(delete -1 -2 -3 -4 -5)

(assert)

(split 4)

(flatten)

(split 1)

(assert)

(flatten)

(assert)

(skolem!)

(inst-cp -2 "j!1")

(inst-cp -7 "j!1")

(flatten)

(assert)

(grind)

(typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(typepred "i!1")

(grind)

(skolem!)

(flatten)

(inst-cp -2 "i!1")

(inst-cp -4 "i!1")

(inst-cp -4 "i!2")

(flatten)

(assert)

(expand "External")

(split -1)

(flatten)

(assert)

(auto-rewrite! -5 -6 -7 -8)

(delete -5 -6 -7 -8)

(assert)

(case "i!1=i!2")

(assert)

(split 4)

(flatten)

(assert)

(flatten)

(assert)

(grind)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

(grind)

(flatten)

(assert)

(assert)

(inst-cp -5 "i!1")

(flatten)

(assert)

(split 5)

(flatten)

(split 1)

(assert)

(flatten)

(assert)

(skolem!)

(inst-cp -6 "j!1")

(inst-cp -9 "j!1")

(inst-cp -14 "j!1")

(flatten)

(assert)

(case "j!1=i!2")

(assert) (assert)

(flatten)

(assert)

(case "i!2=waiting0")

(assert) (assert)

(case "i!1=waiting")

(assert)

(flatten)

(assert)

(assert)

(case "j!1=waiting")

(assert)

(flatten)

(assert)

(assert)

(grind)

(grind) (grind) (grind) (grind) (grind) (grind) (grind)

(flatten)

(inst-cp -9 "i!1")

(assert)

(flatten)

(assert)

(flatten)

(assert)

(auto-rewrite! -5 -6 -7 -8)

(delete -5 -6 -7 -8)

(assert)

(case "i!1=i!2")

(assert)

(skolem!)

(inst-cp -6 "j!1")

(inst-cp -9 "j!1")

(inst-cp -12 "j!1")

(flatten)

(assert)

(case "j!1=i!1")

(propax) (flatten)

(assert)

(assert)

(flatten)

(assert)

(split 14)

(grind) (grind) (grind) (grind)

10 subproofs, one for each transition.
Three from client, five from server, two from communication system.
Download and investigate from course Web site.

Only with computer support, verification proofs become manageable.
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1. Verification by Computer-Supported Proving

2. Verification by Automatic Model Checking
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The Basic Approach

Translation of the original problem to a problem in automata theory.

Original problem: S |= P .

S = 〈I , R〉, PLTL formula P .
Does property P hold for every run of system S?

Construct system automaton SA with language L(SA).

A language is a set of infinite words.
Each such word describes a system run.
L(SA) describes the set of runs of S .

Construct property automaton PA with language L(PA).

L(PA) describes the set of runs satisfying P .

Equivalent Problem: L(SA) ⊆ L(PA).

The language of SA must be contained in the language of PA.

There exists an efficient algorithm to solve this problem.
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Finite State Automata

A (variant of a) labeled transition system in a finite state space.

Take finite sets State and Label .

The state space State.
The alphabet Label .

A (finite state) automaton A = 〈I ,R ,F 〉 over State and Label :

A set of initial states I ⊆ State.
A labeled transition relation R ⊆ Label × State × State.
A set of final states F ⊆ State.

Büchi automata: F is called the set of accepting states.

We will only consider infinite runs of Büchi automata.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 31/66



Runs and Languages

An infinite run r = s0
l0→ s1

l1→ s2
l2→ . . . of automaton A:

s0 ∈ I and R(li , si , si+1) for all i ∈ N.
Run r is said to read the infinite word w(r) := 〈l0, l1, l2, . . .〉.

A = 〈I ,R ,F 〉 accepts an infinite run r :
Some state s ∈ F occurs infinitely often in r .
This notion of acceptance is also called Büchi acceptance.

The language L(A) of automaton A:
L(A) := {w(r) : A accepts r}.
The set of words which are read by the runs accepted by A.

Example: L(A) = (a∗bb∗a)∗aω + (a∗bb∗a)ω = (b∗a)ω.
w i = ww . . . w (i occurrences of w).
w∗ = {w i : i ∈ N} = {〈〉, w , ww , www , . . .}.
wω = wwww . . . (infinitely often).
An infinite repetition of an arbitrary number
of b followed by a.

Edmund Clarke: “Model Checking”, 1999.
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A Finite State System as an Automaton

The automaton SA = 〈I ,R ,F 〉 for a finite state system S = 〈IS ,RS〉:
State := StateS ∪ {ι}.

The state space StateS of S is finite; additional state ι (“iota”).
Label := P(AP).

Finite set AP of atomic propositions.
All PLTL formulas are built from this set only.

Powerset P(S) := {s : s ⊆ S}.
Every element of Label is thus a set of atomic propositions.

I := {ι}.
Single initial state ι.

R(l , s, s ′) :⇔ l = L(s ′) ∧ (RS(s, s ′) ∨ (s = ι ∧ IS(s ′))).
L(s) := {p ∈ AP : s |= p}.
Each transition is labeled by the set of atomic propositions satisfied
by the successor state.
Thus all atomic propositions are evaluated on the successor state.

F := State.
Every state is accepting.
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A Finite State System as an Automaton

Edmund Clarke et al: “Model Checking”, 1999.

If r = s0 → s1 → s2 → . . . is a run of S , then SA accepts the labelled

version rl := ι
L(s0)
→ s0

L(s1)
→ s1

L(s2)
→ s2

L(s3)
→ . . . of r .
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A System Property as an Automaton

Also an PLTL formula can be translated to a finite state automaton.

We need the automaton PA for a PLTL property P .

Requirement: r |= P ⇔ PA accepts rl .
A run satisfies property P if and only if automaton AP accepts the
labeled version of the run.

Example: 2p.

s
true

~p
p

Example: 3p.

true
p

~p

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 35/66



Further Examples

Example: 32p.

Gerard Holzmann: “The Spin Model Checker”, 2004.

Example: 23p.

Gerard Holzmann: “The Model Checker Spin”, 1997.

We will give later an algorithm to convert arbitrary PLTL formulas to
automata.
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System Properties

State equivalence: L(s) = L(t).

Both states have the same labels.
Both states satisfy the same atomic propositions in AP .

Run equivalence: w(rl ) = w(r ′l ).

Both runs have the same sequences of labels.
Both runs satisfy the same PLTL formulas built over AP .

Indistinguishability: w(rl) = w(r ′l ) ⇒ (r |= P ⇔ r ′ |= R)

PLTL formula P cannot distinguish between runs r and r ′ whose
labeled versions read the same words.

Consequence: S |= P ⇔ L(SA) ⊆ L(PA).

Proof that, if every run of S satisfies P , then every word w(rl ) in
L(SA) equals some word w(r ′l ) in L(PA), and vice versa.
“Vice versa” direction relies on indistinguishability property.
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The Next Steps

Problem: L(SA) ⊆ L(PA)

Equivalent to: L(SA) ∩ L(PA) = ∅.
Complement L := {w : w 6∈ L}.

Equivalent to: L(SA) ∩ L(¬PA) = ∅.

L(A) = L(¬A).

Equivalent Problem: L(SA) ∩ L((¬P)A) = ∅.
We will introduce the synchronized product automaton A ⊗ B.

A transition of A⊗B represents a simultaneous transition of A and B.

Property: L(A) ∩ L(B) = L(A ⊗ B).

Final Problem: L(SA ⊗ (¬P)A) = ∅.
We have to check whether the language of this automaton is empty.
We have to look for a word w accepted by this automaton.

If no such w exists, then S |= P.
If such a w = w(rl ) exists, then r is a counterexample, i.e. a run of S

such that r 6|= P.
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Synchronized Product of Two Automata

Given two finite automata A = 〈IA,RA,StateA〉 and B = 〈IB ,RB ,FB〉.

Synchronized product A ⊗ B = 〈I ,R ,F 〉.
State := StateA × StateB .
Label := LabelA = LabelB .
I := IA × IB .
R(l , 〈sA, sB〉, 〈s ′A, s ′B〉) :⇔ RA(l , sA, s ′A) ∧ RB(l , sB , s ′B).
F := StateA × FB .

Special case where all states of automaton A are accepting.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 39/66



Synchronized Product of Two Automata

Edmund Clarke: “Model Checking”, 1999.

<r1,q1>

<r1,q2>

<r2,q1>

<r2,q2>

a

b

a

b

ba
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Example

Check whether S |= 2(P ⇒ #3Q).

B. Berard et al: “Systems and Software Verification”, 2001.

The product automaton accepts a run, thus the property does not hold.
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Checking Emptiness

How to check whether L(A) is non-empty?

Suppose A = 〈I ,R ,F 〉 accepts a run r .
Then r contains infinitely many occurrences of some state in F .
Since State is finite, in some suffix r ′ every state occurs infinit. often.
Thus every state in r ′ is reachable from every other state in r ′.

C is a strongly connected component (SCC) of graph G if
C is a subgraph of G ,
every node in C is reachable from every other node in C along a path
entirely contained in C , and
C is maximal (not a subgraph of any other SCC of G).

Thus the states in r ′ are contained in an SCC C .
C is reachable from an initial state.
C contains an accepting state.
Conversely, any such SCC generates an accepting run.

L(A) is non-empty if and only if the reachability graph of A has an SCC
that contains an accepting state.
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Checking Emptiness

Find in the reachability graph an SCC that contains an accepting state.

We have to find an accepting state with a cycle back to itself.

Any such state belongs to some SCC.
Any SCC with an accepting state has such a cycle.
Thus this is a sufficient and necessary condition.

Any such a state s defines a counterexample run r .

r = ι → . . . → s → . . . → s → . . . → s → . . .

Finite prefix ι → . . . → s from initial state ι to s.
Infinite repetition of cycle s → . . . → s from s to itself.

This is the core problem of PLTL model checking; it can be solved by a
depth-first search algorithm.
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Basic Structure of Depth-First Search

Visit all states of the reachability graph of an automaton 〈{ι},R ,F 〉.

global
StateSpace V := {}
Stack D := 〈〉

proc main()
push(D , ι)
visit(ι)
pop(D)

end

proc visit(s)
V := V ∪ {s}
for 〈l , s, s ′〉 ∈ R do

if s ′ 6∈ V

push(D , s ′)
visit(s ′)
pop(D)

end
end

end

State space V holds all states visited so far; stack D holds path from
initial state to currently visited state.
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Checking State Properties

Apply depth-first search to checking a state property (assertion).

global
StateSpace V := {}
Stack D := 〈〉

proc main()
// r becomes true, iff
// counterexample run is found
push(D, ι)
r := search(ι)
pop(D)

end

function search(s)
V := V ∪ {s}
if ¬check(s) then
print D

return true
end
for 〈l , s, s′〉 ∈ R do

if s′ 6∈ V

push(D, s′)
r := search(s′)
pop(D)
if r then return true end

end
end
return false

end

Stack D can be used to print counterexample run.
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Depth-First Search for Acceptance Cycle

global
. . .

Stack C := 〈〉

proc main()
push(D, ι); r := search(ι); pop(D)

end

function searchCycle(s)
for 〈l , s, s′〉 ∈ R do

if has(D, s′) then
print D; print C ; print s′

return true
else if ¬has(C , s′) then

push(C , s′);
r := searchCycle(s′)
pop(C);
if r then return true end

end
end
return false

end

boolean search(s)
V := V ∪ {s}
for 〈l , s, s′〉 ∈ R do

if s′ 6∈ V

push(D, s′)
r := search(s′)
pop(D)
if r then return true end

end
end
if s ∈ F then

r := searchCycle(s)
if r then return true end

end
return false

end
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Depth-First Search for Acceptance Cycle

At each call of search(s),
s is a reachable state,
D describes a path from ι to s.

search calls searchCycle(s)
on a reachable accepting state s

in order to find a cycle from s to itself.

At each call of searchCycle(s),
s is a state reachable from a reachable accepting state sa,
D describes a path from ι to sa,
D → C describes a path from ι to s (via sa).

Thus we have found an accepting cycle D → C → s ′, if

there is a transition s
l
→ s ′,

such that s ′ is contained in D.

If the algorithm returns “true”, there exists a violating run; the converse
follows from the exhaustiveness of the search.
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Implementing the Search

The state space V ,
is implemented by a hash table for efficiently checking s ′ 6∈ V .

Rather than using explicit stacks D and C ,
each state node has two bits d and c ,
d is set to denote that the state is in stack D,
c is set to denote that the state is in stack C .

The counterexample is printed,
by searching, starting with ι, the unique sequence of reachable nodes
where d is set until the accepting node sa is found, and
by searching, starting with a successor of sa, the unique sequence of
reachable nodes where c is set until the cycle is detected.

Furthermore, it is not necessary to reset the c bits, because
search first explores all states reachable by an accepting state s before
trying to find a cycle from s; from this, one can show that
called with the first accepting node s that is reachable from itself,
search2 will not encounter nodes with c bits set in previous searches.
With this improvement, every state is only visited twice.
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Complexity of the Search

The complexity of checking S |= P is as follows.

Let |P | denote the number of subformulas of P .

|State(¬P)A| = O(2|P|).

|StateA⊗B | = |StateA| · |StateB |.

|StateSA⊗(¬P)A | = O(|StateSA
| · 2|P|)

The time complexity of search is linear in the size of State.

Actually, in the number of reachable states (typically much smaller).
Only true for the improved variant where the c bits are not reset.
Then every state is visited at most twice.

PLTL model checking is linear in the number of reachable states but
exponential in the size of the formula.
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The Overall Process

Basic PLTL model checking for deciding S |= P .

Convert system S to automaton SA.
Atomic propositions of PLTL formula are evaluated on each state.

Convert negation of PLTL formula P to automaton (¬P)A.
How to do so, remains to be described.

Construct synchronized product automaton SA ⊗ (¬P)A.
After that, formula labels are not needed any more.

Find SCC in reachability-graph of product automaton.
A purely graph-theoretical problem that can be efficiently solved.
Time complexity is linear in the size of the state space of the system
but exponential in the size of the formula to be checked.
Weak scheduling fairness with k components: runtime is increased by
factor k + 2 (worst-case, “in practice just factor 2” [Holzmann]).

The basic approach immediately leads to state space explosion; further
improvements are needed to make it practical.
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On the Fly Model Checking

For checking L(SA ⊗ (¬P)A) = ∅, it is not necessary to construct the
states of SA in advance.

Only the property automaton (¬P)A is constructed in advance.

This automaton has comparatively small state space.

The system automaton SA is constructed on the fly.

Construction is guided by (¬P)A while computing SA ⊗ (¬P)A.
Only that part of the reachability graph of SA is expanded that is
consistent with (¬P)A (i.e. can lead to a counterexample run).

Typically only a part of the state space of SA is investigated.

A smaller part, if a counterexample run is detected early.
A larger part, if no counterexample run is detected.

Unreachable system states and system states that are not along possible
counterexample runs are never constructed.
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On the Fly Model Checking

Expansion of state s = 〈s0, s1〉 of product automaton SA ⊗ (¬P)A into
the set R(s) of transitions from s (for 〈l , s, s ′〉 ∈ R(s) do . . . ).

Let S ′
1 be the set of all successors of state s1 of (¬P)A.
Property automaton (¬P)A has been precomputed.

Let S ′
0 be the set of all successors of state s0 of SA.
Computed on the fly by applying system transition relation to s0.

R(s) := {〈l , 〈s0, s1〉, 〈s
′

0, s
′

1〉〉 : s ′0 ∈ S ′

0 ∧ s ′1 ∈ S ′

1 ∧ s1
l
→ s ′1 ∧ L(s ′0) ∈ l}.

Choose candidate s ′0 ∈ S ′

0.
Determine set of atomic propositions L(s ′0) true in s ′0.
If L(s ′0) is not consistent with the label of any transition

〈s0, s1〉
l
→ 〈s ′0, s

′

1〉 of the proposition automaton, s ′0 it is ignored.

Otherwise, R is extended by every transition 〈s0, s1〉
l
→ 〈s ′0, s

′

1〉 where

L(s ′0) is consistent with label l of transition s1
l
→ s ′1.

Actually, depth-first search proceeds with first suitable successor 〈s ′0, s
′
1〉

before expanding the other candidates.
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The Model Checker Spin

Spin system:

Gerard J. Holzmann et al, Bell Labs, 1980–.
Freely available since 1991.
Workshop series since 1995 (12th workshop “Spin 2005”).
ACM System Software Award in 2001.

Spin resources:

Web site: http://spinroot.com.
Survey paper: Holzmann “The Model Checker Spin”, 1997.
Book: Holzmann “The Spin Model Checker — Primer and Reference
Manual”, 2004.

Goal: verification of (concurrent/distributed) software models.
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The Model Checker Spin

On-the-fly LTL model checking.

Explicit state representation

Representation of system S by automaton SA.
There exist various other approaches (discussed later).

On-the-fly model checking.

Reachable states of SA are only expended on demand.
Partial order reduction to keep state space manageable.

LTL model checking.
Property P to be checked described in PLTL.

Propositional linear temporal logic.

Description converted into property automaton PA.

Automaton accepts only system runs that do not satisfy the property.

Model checking based on automata theory.
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The Spin System Architecture
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Features of Spin

System description in Promela.
Promela = Process Meta-Language.

Spin = Simple Promela Interpreter.

Express coordination and synchronization aspects of a real system.
Actual computation can be e.g. handled by embedded C code.

Simulation mode.

Investigate individual system behaviors.
Inspect system state.
Graphical interface XSpin for visualization.

Verification mode.

Verify properties shared by all possible system behaviors.
Properties specified in PLTL and translated to “never claims”.

Promela description of automaton for negation of the property.

Generated counter examples may be investigated in simulation mode.

Verification and simulation are tightly integrated in Spin.
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Some New Promela Features

Active processes, inline definitions, atomic statements, output.

mtype = { P, C, N }

mtype turn = P;

inline request(x, y) { atomic { x == y -> x = N } }

inline release(x, y) { atomic { x = y } }

#define FORMAT "Output: %s\n"

active proctype producer()

{

do

:: request(turn, P) -> printf(FORMAT, "P"); release(turn, C);

od

}

active proctype producer()

{

do

:: request(turn, C) -> printf(FORMAT, "C"); release(turn, P);

od

}
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Some New Promela Features

Embedded C code.

/* declaration is added locally to proctype main */

c_state "float f" "Local main"

active proctype main()

{

c_code { Pmain->f = 0; }

do

:: c_expr { Pmain->f <= 300 };

c_code { Pmain->f = 1.5 * Pmain->f ; };

c_code { printf("%4.0f\n", Pmain->f); };

od;

}

Can embed computational aspects into a Promela model (only works in
verification mode where a C program is generated from the model).
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Spin Usage for Simulation

Command-line usage of spin: spin --.

Perform syntax check.

spin -a file

Run simulation.

No output: spin file

One line per step: spin -p file

One line per message: spin -c file

Bounded simulation: spin -usteps file

Reproducible simulation: spin -nseed file

Interactive simulation: spin -i file

Guided simulation: spin -t file
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Spin Usage for Verification

Generate never claim
spin -f "nformula" >neverfile

Generate verifier.
spin -N neverfile -a file

ls -la pan.*

-rw-r--r-- 1 schreine schreine 3073 2005-05-10 16:36 pan.b

-rw-r--r-- 1 schreine schreine 150665 2005-05-10 16:36 pan.c

-rw-r--r-- 1 schreine schreine 8735 2005-05-10 16:36 pan.h

-rw-r--r-- 1 schreine schreine 14163 2005-05-10 16:36 pan.m

-rw-r--r-- 1 schreine schreine 19376 2005-05-10 16:36 pan.t

Compile verifier.
cc -O3 -DNP -DMEMLIM=128 -o pan pan.c

Execute verifier.
Options: ./pan --

Find non-progress cycle: ./pan -l

Weak scheduling fairness: ./pan -l -f

Maximum search depth: ./pan -l -f -mdepth
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Spin Verifier Generation Options

cc -O3 options -o pan pan.c

-DNP Include code for non-progress cycle detection
-DMEMLIM=N Maximum number of MB used
-DNOREDUCE Disable partial order reduction
-DCOLLAPSE Use collapse compression method
-DHC Use hash-compact method
-DDBITSTATE Use bitstate hashing method

For detailed information, look up the manual.
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Spin Verifier Output

warning: for p.o. reduction to be valid the never claim must be stutter-invariant

(never claims generated from LTL formulae are stutter-invariant)

(Spin Version 4.2.2 -- 12 December 2004)

+ Partial Order Reduction

Full statespace search for:

never claim +

assertion violations + (if within scope of claim)

acceptance cycles + (fairness disabled)

invalid end states - (disabled by never claim)

State-vector 52 byte, depth reached 587, errors: 0

861 states, stored

856 states, matched

1717 transitions (= stored+matched)

0 atomic steps

hash conflicts: 1 (resolved)

Stats on memory usage (in Megabytes):

...

2.622 total actual memory usage

...
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XSpin Simulation Options
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XSpin Verification Options
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Other Approaches to Model Checking

There are fundamentally different approaches to model checking than the
automata-based one implemented in Spin.

Symbolic Model Checking (e.g. SMV, NuSMV).
Core: binary decision diagrams (BDDs).

Data structures to represent boolean functions.
Can be used to describe state sets and transition relations.

The set of states satisfying a CTL formula P is computed as the BDD
representation of a fixpoint of a function (predicate transformer) FP .

If all initial system states are in this set, P is a system property.

BDD packages for efficiently performing the required operations.
Bounded Model Checking (e.g. NuSMV2).

Core: propositional satisfiability.
Is there a truth assignment that makes propositional formula true?

There is a counterexample of length at most k to a LTL formula P , if
and only if a particular propositional formula Fk,P is satisfiable.

Problem: find suitable bound k that makes method complete.

SAT solvers for efficiently deciding propositional satisfiability.
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Other Approaches to Model Checking

Counter-Example Guided Abstraction Refinement (e.g. BLAST).
Core: model abstraction.

A finite set of predicates is chosen and an abstract model of the
system is constructed as a finite automaton whose states represent
truth assignments of the chosen predicates.

The abstract model is checked for the desired property.

If the abstract model is error-free, the system is correct; otherwise an
abstract counterexample is produced.
It is checked whether the abstract counterexample corresponds to a
real counterexample; if yes, the system is not correct.
If not, the chosen set of predicates contains too little information to
verify or falsify the program; new predicates are added to the set.
Then the process is repeated.

Core problem: how to refine the abstraction.

Automated theorem provers are applied here.

Many model checkers for software verification use this approach.
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