Verifying Concurrent Systems

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.uni-linz.ac.at

1. Verification by Computer-Supported Proving

2. Verification by Automatic Model Checking

A Bit Transmission Protocol

$$
\begin{aligned}
& \operatorname{var} x, y \\
& \boldsymbol{v a r} v:=0, r:=0, a:=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { S: loop } \\
& \quad \text { choose } x \in\{0,1\} \\
& 1: v, r:=x, 1 \\
& 2: \text { wait } a=1 \\
& r:=0 \\
& 3: \text { wait } a=0
\end{aligned}
$$

Transmit a bit through a wire.

A (Simplified) Model of the Protocol

State : $=P C^{2} \times\left(\mathbb{N}_{2}\right)^{5}$
$I(p, q, x, y, v, r, a): \Leftrightarrow p=q=1 \wedge x \in \mathbb{N}_{2} \wedge v=r=a=0$.
$R\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow$

$$
S 1(\ldots) \vee S 2(\ldots) \vee S 3(\ldots) \vee R 1(\ldots) \vee R 2(\ldots) .
$$

$S 1\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow$

$$
p=1 \wedge p^{\prime}=2 \wedge v^{\prime}=x \wedge r^{\prime}=1 \wedge
$$

$$
q^{\prime}=q \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge v^{\prime}=v \wedge a^{\prime}=a .
$$

$S 2\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow$

$$
p=2 \wedge p^{\prime}=3 \wedge a=1 \wedge r^{\prime}=0 \wedge
$$

$$
q^{\prime}=q \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge v^{\prime}=v \wedge a^{\prime}=a
$$

$$
S 3\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow
$$

$$
p=3 \wedge p^{\prime}=1 \wedge a=0 \wedge x^{\prime} \in \mathbb{N}_{2} \wedge
$$

$$
q^{\prime}=q \wedge y^{\prime}=y \wedge v^{\prime}=v \wedge r^{\prime}=r \wedge a^{\prime}=a
$$

$$
R 1\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow
$$

$$
q=1 \wedge q^{\prime}=2 \wedge r=1 \wedge y^{\prime}=v \wedge a^{\prime}=1 \wedge
$$

$$
p^{\prime}=p \wedge x^{\prime}=x \wedge v^{\prime}=v \wedge r^{\prime}=r .
$$

$R 2\left(\langle p, q, x, y, v, r, a\rangle,\left\langle p^{\prime}, q^{\prime}, x^{\prime}, y^{\prime}, v^{\prime}, r^{\prime}, a^{\prime}\right\rangle\right): \Leftrightarrow$ $q=2 \wedge q^{\prime}=1 \wedge r=0 \wedge a^{\prime}=0 \wedge$
$p^{\prime}=p \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge v^{\prime}=v \wedge r^{\prime}=r$.

A Verification Task

$$
\begin{aligned}
& \langle I, R\rangle \models \square(q=2 \Rightarrow y=x) \\
& \text { Invariant }(p, \ldots) \Rightarrow(q=2 \Rightarrow y=x) \\
& I(p, \ldots) \Rightarrow \operatorname{Invariant}(p, \ldots) \\
& R\left(\langle p, \ldots\rangle,\left\langle p^{\prime}, \ldots\right\rangle\right) \wedge \operatorname{Invariant}(p, \ldots) \Rightarrow \operatorname{Invariant}\left(p^{\prime}, \ldots\right) \\
& \text { Invariant }(p, q, x, y, v, r, a): \Leftrightarrow \\
& \quad(p=1 \vee p=2 \vee p=3) \wedge(q=1 \vee q=2) \wedge \\
& (x=0 \vee x=1) \wedge(v=0 \vee v=1) \wedge(r=0 \vee r=1) \wedge(a=0 \vee a=1) \wedge \\
& (p=1 \Rightarrow q=1 \wedge r=0 \wedge a=0) \wedge \\
& (p=2 \Rightarrow r=1) \wedge \\
& (p=3 \Rightarrow r=0) \wedge \\
& (q=1 \Rightarrow a=0) \wedge \\
& (q=2 \Rightarrow(p=2 \vee p=3) \wedge a=1 \wedge y=x) \wedge \\
& (r=1 \Rightarrow p=2 \wedge v=x)
\end{aligned}
$$

The invariant captures the essence of the protocol.

The Verification Task in PVS

protocol: THEORY

BEGIN

```
p, q, x, y, v, r, a: nat
p0, q0, x0, y0, v0, r0, a0: nat
```

S1: bool =

$$
\begin{aligned}
& \mathrm{p}=1 \text { AND } \mathrm{p} 0=2 \text { AND } \mathrm{v} 0=\mathrm{x} \text { AND } \mathrm{rO}=1 \text { AND } \\
& \mathrm{q} 0=\mathrm{q} \text { AND } \mathrm{x} 0=\mathrm{x} \text { AND } \mathrm{y} 0=\mathrm{y} \text { AND v0 }=\mathrm{v} \text { AND } \mathrm{aO}=\mathrm{a}
\end{aligned}
$$

S2: bool =

$$
\begin{aligned}
& \mathrm{p}=2 \text { AND } \mathrm{pO}=3 \text { AND } \mathrm{a}=1 \text { AND } \mathrm{rO}=0 \text { AND } \\
& \mathrm{q} 0=\mathrm{q} \text { AND } \mathrm{x} 0=\mathrm{x} \text { AND } \mathrm{yO}=\mathrm{y} \text { AND } \mathrm{vO}=\mathrm{v} \text { AND } \mathrm{aO}=\mathrm{a}
\end{aligned}
$$

S3: bool =

$$
\mathrm{p}=3 \text { AND } \mathrm{p} 0=1 \text { AND } \mathrm{a}=0 \text { AND }(\mathrm{x} 0=0 \mathrm{OR} \mathrm{xO}=1) \text { AND }
$$

$$
\mathrm{q} 0=\mathrm{q} \text { AND } \mathrm{yO}=\mathrm{y} \text { AND } \mathrm{vO}=\mathrm{v} \text { AND } \mathrm{r} 0=\mathrm{r} \text { AND } \mathrm{aO}=\mathrm{a}
$$

R1: bool =

$$
\begin{aligned}
& q=1 \text { AND } q 0=2 \text { AND } r=1 \text { AND } y 0=v \text { AND } a 0=1 \text { AND } \\
& p 0=p \text { AND } x 0=x \text { AND v0 }=v \text { AND } r 0=r
\end{aligned}
$$

R2: bool =

$$
\begin{aligned}
& \mathrm{q}=2 \text { AND } \mathrm{q} 0=1 \text { AND } \mathrm{r}=0 \text { AND } \mathrm{aO}=0 \text { AND } \\
& \mathrm{pO}=\mathrm{p} \text { AND } \mathrm{x} 0=\mathrm{x} \text { AND } \mathrm{yO}=\mathrm{y} \text { AND } \mathrm{vO}=\mathrm{v} \text { AND } \mathrm{rO}=\mathrm{r}
\end{aligned}
$$

The Verification Task in PVS (Contd)

```
Init: bool =
    \(\mathrm{p}=1\) AND \(\mathrm{q}=1\) AND \((\mathrm{x}=0 \mathrm{OR} \mathrm{x}=1)\) AND
    \(\mathrm{v}=0\) AND \(\mathrm{r}=0\) AND \(\mathrm{a}=0\)
Step: bool =
    S1 OR S2 OR S3 OR R1 OR R2
Property: bool =
    \(q=2 \Rightarrow y=x\)
Invariant (p, q, \(x, y, v, r, a:\) nat) : bool =
    ( \(\mathrm{p}=1 \mathrm{OR} \mathrm{p}=2 \mathrm{OR} \mathrm{p}=3\) ) AND
    ( \(q=1 O R q=2\) ) AND
    ( \(\mathrm{x}=0 \mathrm{OR} \mathrm{x}=1\) ) AND
    ( \(\mathrm{v}=0 \mathrm{OR} \mathrm{v}=1\) ) AND
    ( \(r=0\) OR \(r=1\) ) AND
    ( \(\mathrm{a}=0 \mathrm{OR} \mathrm{a}=1\) ) AND
    ( \(\mathrm{p}=1 \Rightarrow \mathrm{q}=1\) AND \(\mathrm{r}=0\) AND \(\mathrm{a}=0\) ) AND
    ( \(p=2 \Rightarrow r=1\) ) AND
    ( \(p=3 \Rightarrow r=0\) ) AND
    ( \(q=1 \Rightarrow a=0\) ) AND
    ( \(q=2 \Rightarrow(p=2\) OR \(p=3)\) AND \(a=1\) AND \(y=x)\) AND
    \((r=1 \Rightarrow(p=2\) AND \(v=x))\)
```


The Verification Task in PVS (Contd'2)

VCO: THEOREM
Invariant (p, q, x, y, v, r, a) => Property
VC1: THEOREM
Init => Invariant (p, q, x, y, v, r, a)
VC2: THEOREM
Step AND Invariant (p, q, $x, y, v, r, a)=>$ Invariant (p0, q0, x0, y0, v0, r0, a0)

END protocol

The Proof in PVS

A Client/Server System

Client system $C_{i}=\left\langle I C_{i}, R C_{i}\right\rangle$.
State $:=P C \times \mathbb{N}_{2} \times \mathbb{N}_{2}$. Int $:=\left\{R_{i}, S_{i}, C_{i}\right\}$.
$I C_{i}(p c$, request, answer $): \Leftrightarrow$ $p c=R \wedge$ request $=0 \wedge$ answer $=0$.
$R C_{i}(I,\langle p c$, request, answer \rangle,
$\left\langle p c^{\prime}\right.$, request ${ }^{\prime}$, answer'$\left.\rangle\right): \Leftrightarrow$
$\left(I=R_{i} \wedge p c=R \wedge\right.$ request $=0 \wedge$ $p c^{\prime}=S \wedge$ request $^{\prime}=1 \wedge$ answer $^{\prime}=$ answer $) \vee$
$\left(I=S_{i} \wedge p c=S \wedge\right.$ answer $\neq 0 \wedge$ $p c^{\prime}=C \wedge$ request $=$ request \wedge answer $\left.{ }^{\prime}=0\right) \vee$
$\left(I=C_{i} \wedge p c=C \wedge\right.$ request $=0 \wedge$ $p c^{\prime}=R \wedge$ request $^{\prime}=1 \wedge$ answer $^{\prime}=$ answer $) \vee$

$$
\begin{aligned}
& \left(I=\overline{R E Q_{i}} \wedge \text { request } \neq 0 \wedge\right. \\
& \left.p c^{\prime}=p c \wedge \text { request }=0 \wedge \text { answer }^{\prime}=\text { answer }\right) \vee \\
& \left(I=A N S_{i} \wedge\right. \\
& \left.p c^{\prime}=p c \wedge \text { request }^{\prime}=\text { request } \wedge \text { answer }^{\prime}=1\right)
\end{aligned}
$$

Client(ident):
param ident
begin
loop
R: sendRequest()
S: receiveAnswer()
C: // critical region
sendRequest()
endloop
end Client

A Client/Server System (Contd)

```
Server system \(S=\langle I S, R S\rangle\).
State \(:=\left(\mathbb{N}_{3}\right)^{3} \times\left(\{1,2\} \rightarrow \mathbb{N}_{2}\right)^{2}\).
Int \(:=\{D 1, D 2, F, A 1, A 2, W\}\).
IS(given, waiting, sender, rbuffer, sbuffer) : \(\Leftrightarrow\)
    given \(=\) waiting \(=\) sender \(=0 \wedge\)
    rbuffer \((1)=\operatorname{rbuffer}(2)=\operatorname{sbuffer}(1)=\operatorname{sbuffer}(2)=0\).
```

$R S(I,\langle$ given, waiting, sender, rbuffer, sbuffer〉,
$\left\langle\right.$ given' $^{\prime}$, waiting ${ }^{\prime}$, sender' ${ }^{\prime}$, 'buffer $^{\prime}$, sbuffer' \rangle) : \Leftrightarrow
$\exists i \in\{1,2\}$:
$\left(I=D_{i} \wedge\right.$ sender $=0 \wedge$ rbuffer $(i) \neq 0 \wedge$
sender ${ }^{\prime}=i \wedge$ rbuffer $^{\prime}(i)=0 \wedge$
$U($ given, waiting, sbuffer $) \wedge$
$\forall j \in\{1,2\} \backslash\{i\}: U_{j}($ rbuffer $\left.)\right) \vee$
$U\left(x_{1}, \ldots, x_{n}\right): \Leftrightarrow x_{1}^{\prime}=x_{1} \wedge \ldots \wedge x_{n}^{\prime}=x_{n}$.
$U_{j}\left(x_{1}, \ldots, x_{n}\right): \Leftrightarrow x_{1}^{\prime}(j)=x_{1}(j) \wedge \ldots \wedge x_{n}^{\prime}(j)=x_{n}(j)$.

Server:
local given, waiting, sender begin
given := 0; waiting := 0
loop
D: sender := receiveRequest() if sender $=$ given then if waiting $=0$ then
F: given $:=0$ else
A1: given := waiting; waiting := 0 sendAnswer (given) endif elsif given $=0$ then
A2: given := sender sendAnswer(given) else
W: waiting := sender endif
endloop
end Server

A Client/Server System (Contd'2)

Server:
local given, waiting, sender
($I=F \wedge$ sender $\neq 0 \wedge$ sender $=$ given \wedge waiting $=0 \wedge$ given $^{\prime}=0 \wedge$ sender $^{\prime}=0 \wedge$
$U($ waiting , rbuffer, sbuffer $)) \vee$
$(I=A 1 \wedge$ sender $\neq 0 \wedge$ sbuffer (waiting) $=0 \wedge$
sender $=$ given \wedge waiting $\neq 0 \wedge$
given $^{\prime}=$ waiting \wedge waiting $^{\prime}=0 \wedge$
sbuffer ${ }^{\prime}($ waiting $)=1 \wedge$ sender $^{\prime}=0 \wedge$
$U($ rbuffer $) \wedge$
$\forall j \in\{1,2\} \backslash\{$ waiting $\}: U_{j}($ sbuffer $\left.)\right) \vee$
$(I=A 2 \wedge$ sender $\neq 0 \wedge$ sbuffer $($ sender $)=0 \wedge$
sender \neq given \wedge given $=0 \wedge$
given $^{\prime}=$ sender \wedge
sbuffer $^{\prime}($ sender $)=1 \wedge$ sender $^{\prime}=0 \wedge$
$U($ waiting , rbuffer $) \wedge$
$\forall j \in\{1,2\} \backslash\{$ sender $\}: U_{j}($ sbuffer $\left.)\right) \vee$
begin
given $:=0$; waiting $:=0$
loop
D: sender := receiveRequest() if sender $=$ given then if waiting $=0$ then
F: given $:=0$ else
A1: given := waiting; waiting $:=0$ sendAnswer(given) endif elsif given $=0$ then
A2: given := sender sendAnswer(given) else
W: waiting := sender endif
endloop
end Server

A Client/Server System (Contd'3)

```
( \(I=W \wedge\) sender \(\neq 0 \wedge\) sender \(\neq\) given \(\wedge\) given \(\neq 0 \wedge\)
    waiting \({ }^{\prime}:=\) sender \(\wedge\) sender \({ }^{\prime}=0 \wedge\)
    \(U(\) given, rbuffer, sbuffer \()) \vee\)
```

```
\(\exists i \in\{1,2\}:\)
    \(\left(I=R E Q_{i} \wedge\right.\) rbuffer \(^{\prime}(i)=1 \wedge\)
        \(U(\) given, waiting, sender, sbuffer \() \wedge\)
        \(\forall j \in\{1,2\} \backslash\{i\}: U_{j}(\) rbuffer \(\left.)\right) \vee\)
    \(\left(I=\overline{\text { ANS }_{i}} \wedge \operatorname{sbuffer}(i) \neq 0 \wedge\right.\)
    sbuffer' \((i)=0 \wedge\)
    \(U(\) given, waiting, sender, rbuffer \() \wedge\)
    \(\forall j \in\{1,2\} \backslash\{i\}: U_{j}(\) sbuffer \(\left.)\right)\).
```

Server:
local given, waiting, sender begin
given := 0; waiting := 0
loop
D: sender := receiveRequest()
if sender $=$ given then
if waiting $=0$ then
F: given $:=0$
else
A1: given := waiting;
waiting := 0
sendAnswer (given)
endif
elsif given $=0$ then
A2: given := sender
sendAnswer(given)
else
W: waiting := sender
endif
endloop
end Server

A Client/Server System (Contd'4)

State : $=(\{1,2\} \rightarrow P C) \times\left(\{1,2\} \rightarrow \mathbb{N}_{2}\right)^{2} \times\left(\mathbb{N}_{3}\right)^{2} \times\left(\{1,2\} \rightarrow \mathbb{N}_{2}\right)^{2}$
I(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) : \Leftrightarrow $\forall i \in\{1,2\}: I C\left(p c_{i}\right.$, request $_{i}$, answer $\left._{i}\right) \wedge$ IS(given, waiting, sender, rbuffer, sbuffer)
$R(\langle p c$, request, answer, given, waiting, sender, rbuffer, sbuffer \rangle,
\langle pc', request', answer', given', waiting', sender', rbuffer', sbuffer' \rangle) : \Leftrightarrow
$\left(\exists i \in\{1,2\}: R C_{\text {local }}\left(\left\langle\right.\right.\right.$ pc $_{i}$, request $_{i}$, answer $\left._{i}\right\rangle,\left\langle p c_{i}^{\prime}\right.$, request $_{i}^{\prime}$, answer $\left.\left._{i}^{\prime}\right\rangle\right) \wedge$
\langle given, waiting, sender, rbuffer, sbuffer〉 $\rangle=$ $\left\langle\right.$ given' $^{\prime}$, waiting' ${ }^{\prime}$, sender', rbuffer', sbuffer'〉) \vee
($R S_{\text {local }}(\langle$ given, waiting, sender, rbuffer, sbuffer \rangle,
(given', waiting', sender', rbuffer', sbuffer' $>$) \wedge
$\forall i \in\{1,2\}:\left\langle p c_{i}\right.$, request $_{i}$, answer $\left._{i}\right\rangle=\left\langle p c_{i}^{\prime}\right.$, request $_{i}^{\prime}$, answer $\left.\left._{i}^{\prime}\right\rangle\right) \vee$
($\exists i \in\{1,2\}$: External($i,\left\langle\right.$ request $_{i}$, answer ${ }_{i}$, rbuffer, sbuffer \rangle, $\left\langle\right.$ request $_{i}^{\prime}$, answer ${ }_{i}^{\prime}$, rbuffer $^{\prime}$, sbuffer $\left.\left.{ }^{\prime}\right\rangle\right) \wedge$ $p c=p c^{\prime} \wedge\langle$ sender, waiting, given $\rangle=\left\langle\right.$ sender ${ }^{\prime}$, waiting ${ }^{\prime}$, given $\left.\left.{ }^{\prime}\right\rangle\right)$

The Verification Task

$$
\langle I, R\rangle \models \square \neg\left(p c_{1}=C \wedge p c_{2}=C\right)
$$

```
Invariant( \(p c\), request, answer, sender, given, waiting, rbuffer, sbuffer) : \(\Leftrightarrow\)
\(\forall i \in\{1,2\}:\)
\((p c(i)=C \vee \operatorname{sbuffer}(i)=1 \vee\) answer \((i)=1 \Rightarrow\)
        given \(=i \wedge\)
        \(\forall j: j \neq i \Rightarrow p c(j) \neq C \wedge \operatorname{sbuffer}(j)=0 \wedge \operatorname{answer}(j)=0) \wedge\)
(pc(i) \(=R \Rightarrow\)
    \(\operatorname{sbuffer}(i)=0 \wedge\) answer \((i)=0 \wedge\)
        \((i=\operatorname{given} \Leftrightarrow \operatorname{request}(i)=1 \vee \operatorname{rbuffer}(i)=1 \vee\) sender \(=i) \wedge\)
        \((\operatorname{request}(i)=0 \vee \operatorname{rbuffer}(i)=0)) \wedge\)
(pc(i) \(=S \Rightarrow\)
        (sbuffer \((i)=1 \vee \operatorname{answer}(i)=1 \Rightarrow\)
            \(\operatorname{request}(i)=0 \wedge \operatorname{rbuffer}(i)=0 \wedge\) sender \(\neq i) \wedge\)
        ( \(i \neq\) given \(\Rightarrow\)
        \(\operatorname{request}(i)=0 \vee \operatorname{rbuffer}(i)=0)) \wedge\)
(pc(i) \(=C \Rightarrow\)
    request \((i)=0 \wedge \operatorname{rbuffer}(i)=0 \wedge\) sender \(\neq i \wedge\)
    \(\operatorname{sbuffer}(i)=0 \wedge \operatorname{answer}(i)=0) \wedge\)
```


The Verification Task (Contd)

```
(sender \(=0 \wedge(\) request \((i)=1 \vee \operatorname{rbuffer}(i)=1) \Rightarrow\)
    sbuffer \((i)=0 \wedge\) answer \((i)=0) \wedge\)
(sender \(=i \Rightarrow\)
    (waiting \(\neq i) \wedge\)
    (sender \(=\) given \(\wedge p c(i)=R \Rightarrow\)
        request \((i)=0 \wedge r b u f f e r(i)=0) \wedge\)
        ( \(p c(i)=S \wedge i \neq\) given \(\Rightarrow\)
            request \((i)=0 \wedge \operatorname{rbuffer}(i)=0) \wedge\)
        ( \(p c(i)=S \wedge i=\) given \(\Rightarrow\)
            \(\operatorname{request}(i)=0 \vee \operatorname{rbuffer}(i)=0)) \wedge\)
(waiting \(=i \Rightarrow\)
    given \(\neq i \wedge p c_{i}=S \wedge\) request \(_{i}=0 \wedge\) rbuffer \((i)=0 \wedge\)
    sbuffer \(_{i}=0 \wedge\) answer \(\left.(i)=0\right) \wedge\)
(sbuffer \((i)=1 \Rightarrow\)
    \(\operatorname{answer}(i)=0 \wedge \operatorname{request}(i)=0 \wedge r\) buffer \((i)=0)\)
```

As usual, the invariant has been elaborated in the course of the proof.

The Verification Task in PVS

```
clientServer: THEORY
BEGIN
```

```
% client indices and program counter constants
Index : TYPE+ = { x: nat | x = 1 OR x = 2 } CONTAINING 1
Index0: TYPE+ = { x: nat | x < 3 } CONTAINING 0
PC: TYPE+ = { R, S, C }
% client states
pc, pc0: [ Index -> PC ]
request, request0: [ Index -> bool ]
answer, answer0: [ Index -> bool ]
% server states
given, given0: Index0
waiting, waiting0: Index0
sender, sender0: Index0
rbuffer, rbuffer0: [ Index -> bool ]
sbuffer, sbuffer0: [ Index -> bool ]
```


The Verification Task in PVS (Contd)

```
i, j: VAR Index
%
% initial state condition
%
IC(pc: PC, request: bool, answer: bool): bool =
    pc = R AND request = FALSE AND answer = FALSE
IS(given: Index0, waiting: Index0, sender: Index0,
        rbuffer: [ Index -> bool ], sbuffer: [ Index -> bool ]): bool =
    given = 0 AND waiting = 0 AND sender = 0 AND
    (FORALL i: rbuffer(i) = FALSE AND sbuffer(i) = FALSE)
Initial: bool =
    (FORALL i: IC(pc(i), request(i), answer(i))) AND
    IS(given, waiting, sender, rbuffer, sbuffer)
```


The Verification Task in PVS (Contd'2)

```
% ---------------------------------------------------------------------------------
% transition relation
%
RC(pc: PC, request: bool, answer: bool,
    pc0: PC, request0: bool, answer0: bool): bool =
    (pc = R AND request = FALSE AND
        pc0 = S AND request0 = TRUE AND answer0 = answer) OR
    (pc = S AND answer = TRUE AND
    pc0 = C AND request0 = request AND answer0 = FALSE) OR
    (pc = C AND request = FALSE AND
    pc0 = R and request0 = TRUE AND answer0 = answer)
RS(given: Index0, waiting: Index0, sender: Index0,
        rbuffer: [ Index -> bool ], sbuffer: [ Index -> bool ],
    given0: Index0, waiting0: Index0, sender0: Index0,
        rbuffer0: [ Index -> bool ], sbuffer0: [ Index -> bool ]): bool =
    (EXISTS i:
    sender = 0 AND rbuffer(i) = TRUE AND
    sender0 = i AND rbuffer0(i) = FALSE AND
    given = given0 AND waiting = waiting0 AND sbuffer = sbuffer0 AND
    FORALL j: j /= i => rbuffer(j) = rbuffer0(j)) OR
```


The Verification Task in PVS (Contd'3)

```
(sender /= 0 AND sender = given AND waiting = 0 AND
    given0 = 0 AND sender0 = 0 AND
    waiting = waiting0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR
(sender /= 0 AND
    sender = given AND waiting /= 0 AND
    sbuffer(waiting) = FALSE AND % change order for type-checking
    given0 = waiting AND waiting0 = 0 AND
    sbuffer0(waiting) = TRUE AND sender0 = 0 AND
    rbuffer = rbuffer0 AND
    (FORALL j: j /= waiting => sbuffer(j) = sbufferO(j))) OR
(sender /= 0 AND sbuffer(sender) = FALSE AND
    sender /= given AND given = 0 AND
    given0 = sender AND
    sbuffer0(sender) = TRUE AND sender0 = 0 AND
    waiting = waiting0 AND rbuffer = rbuffer0 AND
    (FORALL j: j /= sender => sbuffer(j) = sbufferO(j))) OR
(sender /= 0 AND sender /= given AND given /= 0 AND
    waiting0 = sender AND sender0 = 0 AND
    given = given0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0)
```


The Verification Task in PVS (Contd'4)

```
External(i: Index,
    pc: PC, request: bool, answer: bool,
    pc0: PC, request0: bool, answer0: bool,
    given: Index0, waiting: Index0, sender: Index0,
        rbuffer: [ Index -> bool ], sbuffer: [ Index -> bool ],
        given0: Index0, waiting0: Index0, sender0: Index0,
        rbuffer0: [ Index -> bool ], sbuffer0: [ Index -> bool ]): bool =
(request = TRUE AND
    pcO = pc AND request0 = FALSE AND answer0 = answer AND
    rbufferO(i) = TRUE AND
    given = given0 AND waiting = waiting0 AND sender = sender0 AND
    sbuffer = sbuffer0 AND
    (FORALL j: j /= i => rbuffer(j) = rbuffer0(j))) OR
(pc0 = pc AND request0 = request AND answer0 = TRUE AND
    sbuffer(i) = TRUE AND sbuffer0(i) = FALSE AND
    given = given0 AND waiting = waiting0 AND sender = sender0 AND
    rbuffer = rbuffer0 AND
    (FORALL j: j /= i => sbuffer(j) = sbuffer0(j)))
```


The Verification Task in PVS (Contd'5)

```
Next: bool =
    ((EXISTS i: RC(pc (i), request (i), answer (i),
                pcO(i), request0(i), answer0(i)) AND
            (FORALL j: j /= i =>
            pc(j) = pcO(j) AND request(j) = request0(j) AND
            answer(j) = answer0(j))) AND
    given = given0 AND waiting = waitingO AND sender = sender0 AND
    rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR
(RS(given, waiting, sender, rbuffer, sbuffer,
        given0, waiting0, sender0, rbuffer0, sbuffer0) AND
    (FORALL j: pc(j) = pcO(j) AND request(j) = request0(j) AND
                answer(j) = answer0(j))) OR
(EXISTS i:
External(i, pc (i), request (i), answer (i),
                        pc0(i), request0(i), answer0(i),
                given, waiting, sender, rbuffer, sbuffer,
                given0, waiting0, sender0, rbuffer0, sbuffer0) AND
(FORALL j: j /= i =>
        pc(j) = pcO(j) AND request(j) = requestO(j) AND
        answer(j) = answer0(j)))
```


The Verification Task in PVS (Contd'6)

```
%
% invariant
%
Invariant(pc: [Index->PC], request: [Index -> bool],
            answer: [Index -> bool],
            given: Index0, waiting: Index0, sender: Index0,
                        rbuffer: [Index -> bool], sbuffer: [Index->bool]): bool =
    FORALL i:
    (pc(i) = C OR sbuffer(i) = TRUE OR answer(i) = TRUE =>
        given = i AND
        FORALL j: j /= i =>
            pc(j) /= C AND
            sbuffer(j) = FALSE AND answer(j) = FALSE) AND
    (pc(i) = R =>
        sbuffer(i) = FALSE AND answer(i) = FALSE AND
        (i /= given =>
            request(i) = FALSE AND rbuffer(i) = FALSE AND sender /= i)
        (i = given =>
            request(i) = TRUE OR rbuffer(i) = TRUE OR sender = i) AND
        (request(i) = FALSE OR rbuffer(i) = FALSE)) AND
```


The Verification Task in PVS (Contd'7)

```
(pc(i) = S =>
    (sbuffer(i) = TRUE OR answer(i) = TRUE =>
        request(i) = FALSE AND rbuffer(i) = FALSE AND sender /= i) AND
    (i /= given =>
        request(i) = FALSE OR rbuffer(i) = FALSE)) AND
(pc(i) = C =>
    request(i) = FALSE AND rbuffer(i) = FALSE AND sender /= i AND
    sbuffer(i) = FALSE AND answer(i) = FALSE) AND
(sender = O AND (request(i) = TRUE OR rbuffer(i) = TRUE) =>
            sbuffer(i) = FALSE AND answer(i) = FALSE) AND
(sender = i =>
    (sender = given AND pc(i) = R =>
        request(i) = FALSE and rbuffer(i) = FALSE) AND
    (waiting /= i) AND
    (pc(i) = S AND i /= given =>
        request(i) = FALSE AND rbuffer(i) = FALSE) AND
    (pc(i) = S AND i = given =>
        request(i) = FALSE OR rbuffer(i) = FALSE)) AND
```


The Verification Task in PVS (Contd'8)

```
(waiting = i =>
    given /= i AND
    pc(waiting) = S AND
    request(waiting) = FALSE AND rbuffer(waiting) = FALSE AND
    sbuffer(waiting) = FALSE AND answer(waiting) = FALSE) AND
(sbuffer(i) = TRUE =>
    answer(i) = FALSE AND request(i) = FALSE AND rbuffer(i) = FALSE)
```

\%
\% mutual exclusion proof

MutEx: THEOREM
Invariant(pc, request, answer,
given, waiting, sender, rbuffer, sbuffer) =>
$\operatorname{NOT}(\mathrm{pc}(1)=\mathrm{C} \operatorname{AND} \mathrm{pc}(2)=\mathrm{C})$

The Verification Task in PVS (Contd'9)

\%
\% invariance proof
\%
Inv1: THEOREM
Initial =>
Invariant (pc, request, answer, given, waiting, sender, rbuffer, sbuffer)

Inv2: THEOREM
Invariant(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) AND Next =>
Invariant (pc0, request0, answer0, given0, waiting0, sender0, rbuffer0, sbuffer0)

END clientServer

The Proof in PVS

Proofs that the system invariant implies the mutual exclusion property and that the initial condition implies the invariant.

The Proof in PVS

Proof that every system transition preserves the invariant.

- 10 subproofs, one for each transition.
- Three from client, five from server, two from communication system.
- Download and investigate from course Web site.

Only with computer support, verification proofs become manageable.

1. Verification by Computer-Supported Proving

2. Verification by Automatic Model Checking

The Basic Approach

Translation of the original problem to a problem in automata theory.

- Original problem: $S \models P$.
- $S=\langle I, R\rangle$, PLTL formula P.
- Does property P hold for every run of system S ?
- Construct system automaton S_{A} with language $\mathcal{L}\left(S_{A}\right)$.
- A language is a set of infinite words.
- Each such word describes a system run.
- $\mathcal{L}\left(S_{A}\right)$ describes the set of runs of S.
- Construct property automaton P_{A} with language $\mathcal{L}\left(P_{A}\right)$.
- $\mathcal{L}\left(P_{A}\right)$ describes the set of runs satisfying P.
- Equivalent Problem: $\mathcal{L}\left(S_{A}\right) \subseteq \mathcal{L}\left(P_{A}\right)$.
- The language of S_{A} must be contained in the language of P_{A}.

There exists an efficient algorithm to solve this problem.

Finite State Automata

A (variant of a) labeled transition system in a finite state space.

- Take finite sets State and Label.
- The state space State.
- The alphabet Label.
- A (finite state) automaton $A=\langle I, R, F\rangle$ over State and Label:
- A set of initial states $I \subseteq$ State.
- A labeled transition relation $R \subseteq$ Label \times State \times State .
- A set of final states $F \subseteq$ State.
- Büchi automata: F is called the set of accepting states.

We will only consider infinite runs of Büchi automata.

Runs and Languages

- An infinite run $r=s_{0} \xrightarrow{I_{0}} s_{1} \xrightarrow{l_{1}} s_{2} \xrightarrow{l_{2}} \ldots$ of automaton A :
$\square s_{0} \in I$ and $R\left(l_{i}, s_{i}, s_{i+1}\right)$ for all $i \in \mathbb{N}$.
- Run r is said to read the infinite word $w(r):=\left\langle I_{0}, I_{1}, I_{2}, \ldots\right\rangle$.
$\square A=\langle I, R, F\rangle$ accepts an infinite run r :
- Some state $s \in F$ occurs infinitely often in r.
- This notion of acceptance is also called Büchi acceptance.
- The language $\mathcal{L}(A)$ of automaton A :
$\square \mathcal{L}(A):=\{w(r): A$ accepts $r\}$.
- The set of words which are read by the runs accepted by A.
- Example: $\mathcal{L}(A)=\left(a^{*} b b^{*} a\right)^{*} a^{\omega}+\left(a^{*} b b^{*} a\right)^{\omega}=\left(b^{*} a\right)^{\omega}$.
- $w^{i}=w w \ldots w(i$ occurrences of $w)$.
$w^{*}=\left\{w^{i}: i \in \mathbb{N}\right\}=\{\langle \rangle, w, w w, w w w, \ldots\}$.
$w^{\omega}=w w w w \ldots$ (infinitely often).
- An infinite repetition of an arbitrary number of b followed by a.

Figure 9.1
A finite automaton.

A Finite State System as an Automaton

The automaton $S_{A}=\langle I, R, F\rangle$ for a finite state system $S=\left\langle I_{S}, R_{S}\right\rangle$:

- State $:=$ State $_{S} \cup\{\iota\}$.
- The state space States of S is finite; additional state ι ("iota").
- Label $:=\mathbb{P}(A P)$.
- Finite set $A P$ of atomic propositions.

All PLTL formulas are built from this set only.

- Powerset $\mathbb{P}(S):=\{s: s \subseteq S\}$.
- Every element of Label is thus a set of atomic propositions.
$\square I:=\{\iota\}$.
- Single initial state ι.
$\square R\left(I, s, s^{\prime}\right): \Leftrightarrow I=L\left(s^{\prime}\right) \wedge\left(R_{S}\left(s, s^{\prime}\right) \vee\left(s=\iota \wedge I_{S}\left(s^{\prime}\right)\right)\right)$.
$■ L(s):=\{p \in A P: s \models p\}$.
- Each transition is labeled by the set of atomic propositions satisfied by the successor state.
- Thus all atomic propositions are evaluated on the successor state.
- $F:=$ State.

E Every state is accepting.

A Finite State System as an Automaton

Figure 9.2
Transforming a Kripke structure into an automaton.
Edmund Clarke et al: "Model Checking", 1999.

If $r=s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow \ldots$ is a run of S, then S_{A} accepts the labelled version $r_{1}:=\iota \xrightarrow{L\left(s_{0}\right)} s_{0} \xrightarrow{L\left(s_{1}\right)} s_{1} \xrightarrow{L\left(s_{2}\right)} s_{2} \xrightarrow{L\left(s_{3}\right)} \ldots$ of r.

A System Property as an Automaton

Also an PLTL formula can be translated to a finite state automaton.

- We need the automaton P_{A} for a PLTL property P.
- Requirement: $r \models P \Leftrightarrow P_{A}$ accepts r_{l}.
- A run satisfies property P if and only if automaton A_{P} accepts the labeled version of the run.
- Example: $\square p$.

- Example: $\diamond p$.

Further Examples

- Example: $\diamond \square p$.

Gerard Holzmann: "The Spin Model Checker", 2004.
■ Example: $\square \diamond p$.

Gerard Holzmann: "The Model Checker Spin", 1997.
We will give later an algorithm to convert arbitrary PLTL formulas to automata.

System Properties

- State equivalence: $L(s)=L(t)$.
- Both states have the same labels.
- Both states satisfy the same atomic propositions in AP.
- Run equivalence: $w\left(r_{l}\right)=w\left(r_{l}^{\prime}\right)$.
- Both runs have the same sequences of labels.
- Both runs satisfy the same PLTL formulas built over AP.
- Indistinguishability: $w\left(r_{l}\right)=w\left(r_{l}^{\prime}\right) \Rightarrow\left(r \models P \Leftrightarrow r^{\prime} \models R\right)$
- PLTL formula P cannot distinguish between runs r and r^{\prime} whose labeled versions read the same words.
- Consequence: $S \models P \Leftrightarrow \mathcal{L}\left(S_{A}\right) \subseteq \mathcal{L}\left(P_{A}\right)$.
- Proof that, if every run of S satisfies P, then every word $w\left(r_{l}\right)$ in $\mathcal{L}\left(S_{A}\right)$ equals some word $w\left(r_{l}^{\prime}\right)$ in $\mathcal{L}\left(P_{A}\right)$, and vice versa.
- "Vice versa" direction relies on indistinguishability property.

The Next Steps

- Problem: $\mathcal{L}\left(S_{A}\right) \subseteq \mathcal{L}\left(P_{A}\right)$
- Equivalent to: $\mathcal{L}\left(S_{A}\right) \cap \overline{\mathcal{L}\left(P_{A}\right)}=\emptyset$.
- Complement $\bar{L}:=\{w: w \notin L\}$.
- Equivalent to: $\mathcal{L}\left(S_{A}\right) \cap \mathcal{L}\left(\neg P_{A}\right)=\emptyset$.
$-\overline{\mathcal{L}(A)}=\mathcal{L}(\neg A)$.
- Equivalent Problem: $\mathcal{L}\left(S_{A}\right) \cap \mathcal{L}\left((\neg P)_{A}\right)=\emptyset$.
- We will introduce the synchronized product automaton $A \otimes B$.
- A transition of $A \otimes B$ represents a simultaneous transition of A and B.
- Property: $\mathcal{L}(A) \cap \mathcal{L}(B)=\mathcal{L}(A \otimes B)$.
- Final Problem: $\mathcal{L}\left(S_{A} \otimes(\neg P)_{A}\right)=\emptyset$.
- We have to check whether the language of this automaton is empty.
- We have to look for a word w accepted by this automaton.
- If no such w exists, then $S \models P$.
- If such a $w=w\left(r_{1}\right)$ exists, then r is a counterexample, i.e. a run of S such that $r \notin P$.

Synchronized Product of Two Automata

Given two finite automata $A=\left\langle I_{A}, R_{A}\right.$, State $\left._{A}\right\rangle$ and $B=\left\langle I_{B}, R_{B}, F_{B}\right\rangle$.

- Synchronized product $A \otimes B=\langle I, R, F\rangle$.
- State $:=$ State $_{A} \times$ State $_{B}$.
- Label $:=$ Label $_{A}=$ Label $_{B}$.
$-I:=I_{A} \times I_{B}$.
$\square R\left(I,\left\langle s_{A}, s_{B}\right\rangle,\left\langle s_{A}^{\prime}, s_{B}^{\prime}\right\rangle\right): \Leftrightarrow R_{A}\left(I, s_{A}, s_{A}^{\prime}\right) \wedge R_{B}\left(I, s_{B}, s_{B}^{\prime}\right)$.
- $F:=$ State $_{A} \times F_{B}$.

Special case where all states of automaton A are accepting.

Synchronized Product of Two Automata

Edmund Clarke: "Model Checking", 1999.

Example

Check whether $S \models \square(P \Rightarrow \bigcirc \diamond Q)$.

The product automaton accepts a run, thus the property does not hold.

Checking Emptiness

How to check whether $\mathcal{L}(A)$ is non-empty?

- Suppose $A=\langle I, R, F\rangle$ accepts a run r.
- Then r contains infinitely many occurrences of some state in F.
- Since State is finite, in some suffix r^{\prime} every state occurs infinit. often.
- Thus every state in r^{\prime} is reachable from every other state in r^{\prime}.
- C is a strongly connected component (SCC) of graph G if
- C is a subgraph of G,
- every node in C is reachable from every other node in C along a path entirely contained in C, and
- C is maximal (not a subgraph of any other SCC of G).
- Thus the states in r^{\prime} are contained in an SCC C.
- C is reachable from an initial state.
- C contains an accepting state.
- Conversely, any such SCC generates an accepting run.
$\mathcal{L}(A)$ is non-empty if and only if the reachability graph of A has an SCC that contains an accepting state.

Checking Emptiness

Find in the reachability graph an SCC that contains an accepting state.

- We have to find an accepting state with a cycle back to itself.
- Any such state belongs to some SCC.
- Any SCC with an accepting state has such a cycle.
- Thus this is a sufficient and necessary condition.
- Any such a state s defines a counterexample run r.

■ $r=\iota \rightarrow \ldots \rightarrow s \rightarrow \ldots \rightarrow s \rightarrow \ldots \rightarrow s \rightarrow \ldots$

- Finite prefix $\iota \rightarrow \ldots \rightarrow s$ from initial state ι to s.
- Infinite repetition of cycle $s \rightarrow \ldots \rightarrow s$ from s to itself.

This is the core problem of PLTL model checking; it can be solved by a depth-first search algorithm.

Basic Structure of Depth-First Search

Visit all states of the reachability graph of an automaton $\langle\{\iota\}, R, F\rangle$.

```
global
    StateSpace V := {}
    Stack D := <\rangle
proc main()
    push(D,\iota)
    visit(\iota)
    pop(D)
end
```

```
proc visit(s)
    \(V:=V \cup\{s\}\)
    for \(\left\langle I, s, s^{\prime}\right\rangle \in R\) do
        if \(s^{\prime} \notin V\)
            \(\operatorname{push}\left(D, s^{\prime}\right)\)
            visit( \(s^{\prime}\) )
            pop(D)
        end
    end
end
```

State space V holds all states visited so far; stack D holds path from initial state to currently visited state.

Checking State Properties

Apply depth-first search to checking a state property (assertion).

```
```

global

```
```

global
StateSpace $V:=\{ \}$
StateSpace $V:=\{ \}$
Stack $D:=\langle \rangle$
Stack $D:=\langle \rangle$
proc main()
proc main()
// r becomes true, iff
// r becomes true, iff
// counterexample run is found
// counterexample run is found
push (D, ι)
push (D, ι)
$r:=\operatorname{search}(\iota)$
$r:=\operatorname{search}(\iota)$
pop(D)
pop(D)
end

```
```

end

```
```

```
function \(\operatorname{search}(s)\)
    \(V:=V \cup\{s\}\)
    if \(\neg\) check(s) then
        print \(D\)
        return true
    end
    for \(\left\langle I, s, s^{\prime}\right\rangle \in R\) do
        if \(s^{\prime} \notin V\)
            \(\operatorname{push}\left(D, s^{\prime}\right)\)
            \(r:=\operatorname{search}\left(s^{\prime}\right)\)
            \(\operatorname{pop}(D)\)
            if \(r\) then return true end
        end
    end
    return false
end
```


Stack D can be used to print counterexample run.

Depth-First Search for Acceptance Cycle

```
global
    Stack C := \(\rangle\)
proc main()
    \(\operatorname{push}(D, \iota) ; r:=\operatorname{search}(\iota) ; \operatorname{pop}(D)\)
end
function searchCycle(s)
    for \(\left\langle I, s, s^{\prime}\right\rangle \in R\) do
        if has( \(D, s^{\prime}\) ) then
            print \(D\); print \(C\); print \(s^{\prime}\)
            return true
        else if \(\neg\) has \(\left(C, s^{\prime}\right)\) then
            push( \(C, s^{\prime}\) );
            \(r:=\) searchCycle(s \(\left.s^{\prime}\right)\)
            pop(C);
            if \(r\) then return true end
        end
    end
    return false
end
```


Depth-First Search for Acceptance Cycle

- At each call of search(s),
- s is a reachable state,
- D describes a path from ι to s.
- search calls searchCycle(s)
- on a reachable accepting state s
\square in order to find a cycle from s to itself.
- At each call of searchCycle(s),
$\square s$ is a state reachable from a reachable accepting state s_{a},
- D describes a path from ι to s_{a},
$\square D \rightarrow C$ describes a path from ι to $s\left(\right.$ via $\left.s_{a}\right)$.
- Thus we have found an accepting cycle $D \rightarrow C \rightarrow s^{\prime}$, if
- there is a transition $s \xrightarrow{\prime} s^{\prime}$,
- such that s^{\prime} is contained in D.

If the algorithm returns "true", there exists a violating run; the converse follows from the exhaustiveness of the search.

Implementing the Search

- The state space V,
- is implemented by a hash table for efficiently checking $s^{\prime} \notin V$.
- Rather than using explicit stacks D and C,
- each state node has two bits d and c,
- d is set to denote that the state is in stack D,
- c is set to denote that the state is in stack C.
- The counterexample is printed,
- by searching, starting with ι, the unique sequence of reachable nodes where d is set until the accepting node s_{a} is found, and
- by searching, starting with a successor of s_{a}, the unique sequence of reachable nodes where c is set until the cycle is detected.
- Furthermore, it is not necessary to reset the c bits, because
- search first explores all states reachable by an accepting state s before trying to find a cycle from s; from this, one can show that
- called with the first accepting node s that is reachable from itself, search2 will not encounter nodes with c bits set in previous searches.
- With this improvement, every state is only visited twice.

Complexity of the Search

The complexity of checking $S \models P$ is as follows.

- Let $|P|$ denote the number of subformulas of P.
$-\mid \operatorname{State}_{(\neg P)_{A} \mid}=O\left(2^{|P|}\right)$.
- \mid State $_{A \otimes B}|=|$ State $_{A}|\cdot|$ State $_{B} \mid$.
$-\mid$ State $_{S_{A} \otimes(\neg P)_{A}} \mid=O\left(\mid\right.$ State $\left._{S_{A}} \mid \cdot 2^{|P|}\right)$
- The time complexity of search is linear in the size of State.
- Actually, in the number of reachable states (typically much smaller).
- Only true for the improved variant where the c bits are not reset.
- Then every state is visited at most twice.

PLTL model checking is linear in the number of reachable states but exponential in the size of the formula.

The Overall Process

Basic PLTL model checking for deciding $S \models P$.

- Convert system S to automaton S_{A}.
- Atomic propositions of PLTL formula are evaluated on each state.
- Convert negation of PLTL formula P to automaton $(\neg P)_{A}$.
- How to do so, remains to be described.
- Construct synchronized product automaton $S_{A} \otimes(\neg P)_{A}$.
\square After that, formula labels are not needed any more.
- Find SCC in reachability-graph of product automaton.
- A purely graph-theoretical problem that can be efficiently solved.
- Time complexity is linear in the size of the state space of the system but exponential in the size of the formula to be checked.
- Weak scheduling fairness with k components: runtime is increased by factor $k+2$ (worst-case, "in practice just factor 2" [Holzmann]).

The basic approach immediately leads to state space explosion; further improvements are needed to make it practical.

On the Fly Model Checking

For checking $\mathcal{L}\left(S_{A} \otimes(\neg P)_{A}\right)=\emptyset$, it is not necessary to construct the states of S_{A} in advance.

- Only the property automaton $(\neg P)_{A}$ is constructed in advance.
- This automaton has comparatively small state space.
- The system automaton S_{A} is constructed on the fly.
\square Construction is guided by $(\neg P)_{A}$ while computing $S_{A} \otimes(\neg P)_{A}$.
- Only that part of the reachability graph of S_{A} is expanded that is consistent with $(\neg P)_{A}$ (i.e. can lead to a counterexample run).
- Typically only a part of the state space of S_{A} is investigated.
- A smaller part, if a counterexample run is detected early.
- A larger part, if no counterexample run is detected.

Unreachable system states and system states that are not along possible counterexample runs are never constructed.

On the Fly Model Checking

Expansion of state $s=\left\langle s_{0}, s_{1}\right\rangle$ of product automaton $S_{A} \otimes(\neg P)_{A}$ into the set $R(s)$ of transitions from $s\left(\right.$ for $\left\langle l, s, s^{\prime}\right\rangle \in R(s)$ do ...).

- Let S_{1}^{\prime} be the set of all successors of state s_{1} of $(\neg P)_{A}$.
- Property automaton $(\neg P)_{A}$ has been precomputed.
- Let S_{0}^{\prime} be the set of all successors of state s_{0} of S_{A}.
- Computed on the fly by applying system transition relation to s_{0}.
- $R(s):=\left\{\left\langle I,\left\langle s_{0}, s_{1}\right\rangle,\left\langle s_{0}^{\prime}, s_{1}^{\prime}\right\rangle\right\rangle: s_{0}^{\prime} \in S_{0}^{\prime} \wedge s_{1}^{\prime} \in S_{1}^{\prime} \wedge s_{1} \xrightarrow{\prime} s_{1}^{\prime} \wedge L\left(s_{0}^{\prime}\right) \in I\right\}$.
- Choose candidate $s_{0}^{\prime} \in S_{0}^{\prime}$.
- Determine set of atomic propositions $L\left(s_{0}^{\prime}\right)$ true in s_{0}^{\prime}.
- If $L\left(s_{0}^{\prime}\right)$ is not consistent with the label of any transition $\left\langle s_{0}, s_{1}\right\rangle \xrightarrow{\prime}\left\langle s_{0}^{\prime}, s_{1}^{\prime}\right\rangle$ of the proposition automaton, s_{0}^{\prime} it is ignored.
- Otherwise, R is extended by every transition $\left\langle s_{0}, s_{1}\right\rangle \xrightarrow{\prime}\left\langle s_{0}^{\prime}, s_{1}^{\prime}\right\rangle$ where $L\left(s_{0}^{\prime}\right)$ is consistent with label / of transition $s_{1} \xrightarrow{\prime} s_{1}^{\prime}$.
Actually, depth-first search proceeds with first suitable successor $\left\langle s_{0}^{\prime}, s_{1}^{\prime}\right\rangle$ before expanding the other candidates.

The Model Checker Spin

- Spin system:
- Gerard J. Holzmann et al, Bell Labs, 1980-.
- Freely available since 1991.
- Workshop series since 1995 (12th workshop "Spin 2005").
- ACM System Software Award in 2001.
- Spin resources:
- Web site: http://spinroot.com.
- Survey paper: Holzmann "The Model Checker Spin", 1997.
- Book: Holzmann "The Spin Model Checker - Primer and Reference Manual", 2004.

Goal: verification of (concurrent/distributed) software models.

The Model Checker Spin

On-the-fly LTL model checking.

- Explicit state representation
- Representation of system S by automaton S_{A}.
- There exist various other approaches (discussed later).
- On-the-fly model checking.
- Reachable states of S_{A} are only expended on demand.
- Partial order reduction to keep state space manageable.
- LTL model checking.
- Property P to be checked described in PLTL.
- Propositional linear temporal logic.
- Description converted into property automaton P_{A}.
- Automaton accepts only system runs that do not satisfy the property.

Model checking based on automata theory.

The Spin System Architecture

Fig. 1. The structure of SPIN simulation and verification.

Features of Spin

- System description in Promela.
- Promela $=$ Process Meta-Language .
- Spin = Simple Promela Interpreter.
- Express coordination and synchronization aspects of a real system.
- Actual computation can be e.g. handled by embedded C code.
- Simulation mode.
- Investigate individual system behaviors.
- Inspect system state.
- Graphical interface XSpin for visualization.
- Verification mode.
- Verify properties shared by all possible system behaviors.
- Properties specified in PLTL and translated to "never claims".
- Promela description of automaton for negation of the property.
- Generated counter examples may be investigated in simulation mode.

Verification and simulation are tightly integrated in Spin.

Some New Promela Features

Active processes, inline definitions, atomic statements, output.

```
mtype ={P,C,N }
mtype turn = P;
inline request(x, y) { atomic { x == y m x = N } }
inline release(x, y) { atomic { x = y } }
#define FORMAT "Output: %s\n"
active proctype producer()
{
    do
    :: request(turn, P) -> printf(FORMAT, "P"); release(turn, C);
    od
}
active proctype producer()
{
    do
    :: request(turn, C) -> printf(FORMAT, "C"); release(turn, P);
    od
Schreiner

\section*{Some New Promela Features}

Embedded C code.
```

/* declaration is added locally to proctype main */
c_state "float f" "Local main"
active proctype main()
{
c_code { Pmain->f = 0; }
do
:: c_expr { Pmain->f <= 300 };
c_code { Pmain->f = 1.5 * Pmain->f ; };
c_code { printf("%4.0f\n", Pmain->f); };
od;
}

```

Can embed computational aspects into a Promela model (only works in verification mode where a C program is generated from the model).

\section*{Spin Usage for Simulation}

Command-line usage of spin: spin --.
- Perform syntax check.
spin -a file
- Run simulation.

No output:
One line per step:
One line per message:
Bounded simulation:
Reproducible simulation:
Interactive simulation:
Guided simulation:
\[
\begin{aligned}
& \text { spin file } \\
& \text { spin -p file } \\
& \text { spin -c file } \\
& \text { spin -usteps file } \\
& \text { spin -nseed file } \\
& \text { spin -i file } \\
& \text { spin -t file }
\end{aligned}
\]

\section*{Spin Usage for Verification}

Generate never claim
spin -f "nformula" >neverfile
- Generate verifier.
\[
\begin{aligned}
& \text { spin -N neverfile -a file } \\
& \text { ls -la pan.* } \\
& \text {-rw-r--r-- } 1 \text { schreine schreine } 3073 \text { 2005-05-10 16:36 pan.b } \\
& \text {-rw-r--r-- } 1 \text { schreine schreine } 150665 \text { 2005-05-10 16:36 pan.c } \\
& \text {-rw-r--r-- } 1 \text { schreine schreine } 8735 \text { 2005-05-10 16:36 pan.h } \\
& \text {-rw-r--r-- } 1 \text { schreine schreine } 14163 \text { 2005-05-10 16:36 pan.m } \\
& \text {-rw-r--r-- } 1 \text { schreine schreine } 19376 \text { 2005-05-10 16:36 pan.t }
\end{aligned}
\]
- Compile verifier.
cc -03 -DNP -DMEMLIM=128 -o pan pan.c
- Execute verifier.
\[
\begin{array}{ll}
\text { Options: } & \text {./pan -- } \\
\text { Find non-progress cycle: } & \text {./pan -1 } \\
\text { Weak scheduling fairness: } & \text {./pan -1 -f } \\
\text { Maximum search depth: } & \text {./pan -1 -f -mdepth }
\end{array}
\]

\section*{Spin Verifier Generation Options}
cc -03 options -o pan pan.c
-DNP Include code for non-progress cycle detection
-DMEMLIM \(=N \quad\) Maximum number of MB used
-DNOREDUCE Disable partial order reduction
-DCOLLAPSE Use collapse compression method
-DHC Use hash-compact method
-DDBITSTATE Use bitstate hashing method
For detailed information, look up the manual.

\section*{Spin Verifier Output}
```

warning: for p.o. reduction to be valid the never claim must be stutter-invariant
(never claims generated from LTL formulae are stutter-invariant)
(Spin Version 4.2.2 -- 12 December 2004)
+ Partial Order Reduction
Full statespace search for:
never claim +
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)
State-vector 52 byte, depth reached 587, errors: 0
8 6 1 ~ s t a t e s , ~ s t o r e d
856 states, matched
1717 transitions (= stored+matched)
O atomic steps
hash conflicts: 1 (resolved)
Stats on memory usage (in Megabytes):
.
2.622 total actual memory usage

XSpin Simulation Options

XSpin Verification Options

Other Approaches to Model Checking

There are fundamentally different approaches to model checking than the automata-based one implemented in Spin.

- Symbolic Model Checking (e.g. SMV, NuSMV).
- Core: binary decision diagrams (BDDs).
- Data structures to represent boolean functions.
- Can be used to describe state sets and transition relations.
- The set of states satisfying a CTL formula P is computed as the BDD representation of a fixpoint of a function (predicate transformer) F_{P}.
- If all initial system states are in this set, P is a system property.
- BDD packages for efficiently performing the required operations.
- Bounded Model Checking (e.g. NuSMV2).
- Core: propositional satisfiability.
- Is there a truth assignment that makes propositional formula true?
- There is a counterexample of length at most k to a LTL formula P, if and only if a particular propositional formula $F_{k, P}$ is satisfiable.
- Problem: find suitable bound k that makes method complete.
- SAT solvers for efficiently deciding propositional satisfiability.

Other Approaches to Model Checking

- Counter-Example Guided Abstraction Refinement (e.g. BLAST).
- Core: model abstraction.
- A finite set of predicates is chosen and an abstract model of the system is constructed as a finite automaton whose states represent truth assignments of the chosen predicates.
- The abstract model is checked for the desired property.
- If the abstract model is error-free, the system is correct; otherwise an abstract counterexample is produced.
- It is checked whether the abstract counterexample corresponds to a real counterexample; if yes, the system is not correct.
- If not, the chosen set of predicates contains too little information to verify or falsify the program; new predicates are added to the set. Then the process is repeated.
- Core problem: how to refine the abstraction.
- Automated theorem provers are applied here.

Many model checkers for software verification use this approach.

