

Verifying Concurrent Systems

Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.uni-linz.ac.at

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

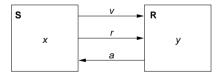
1. Verification by Computer-Supported Proving

2. Verification by Automatic Model Checking

2/66

A Bit Transmission Protocol

1/66



var
$$x, y$$

var $v := 0, r := 0, a := 0$

S: loop R: loop
$$1 : wait \ r = 1$$
 $1 : v, r := x, 1$ $y, a := v, 1$ $2 : wait \ a = 1$ $a := 0$ $a := 0$

Transmit a bit through a wire.

A (Simplified) Model of the Protocol


```
State := PC^2 \times (\mathbb{N}_2)^5
I(p, q, x, y, v, r, a) :\Leftrightarrow p = q = 1 \land x \in \mathbb{N}_2 \land v = r = a = 0.
R(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) : \Leftrightarrow
    S1(\ldots) \vee S2(\ldots) \vee S3(\ldots) \vee R1(\ldots) \vee R2(\ldots)
S1(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
    p = 1 \land p' = 2 \land v' = x \land r' = 1 \land
    q' = q \wedge x' = x \wedge y' = y \wedge v' = v \wedge a' = a.
S2(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
    p = 2 \wedge p' = 3 \wedge a = 1 \wedge r' = 0 \wedge
    q' = q \wedge x' = x \wedge y' = y \wedge v' = v \wedge a' = a.
S3(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
    p = 3 \land p' = 1 \land a = 0 \land x' \in \mathbb{N}_2 \land
    q' = q \wedge v' = v \wedge v' = v \wedge r' = r \wedge a' = a.
R1(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
    q = 1 \land q' = 2 \land r = 1 \land y' = v \land a' = 1 \land
    p' = p \wedge x' = x \wedge v' = v \wedge r' = r.
R2(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
    q = 2 \wedge q' = 1 \wedge r = 0 \wedge a' = 0 \wedge
    p' = p \wedge x' = x \wedge y' = y \wedge v' = v \wedge r' = r.
```

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 3/66 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 4/66

A Verification Task


```
 \langle I,R\rangle \models \Box(q=2\Rightarrow y=x)   Invariant(p,\ldots) \Rightarrow (q=2\Rightarrow y=x)   I(p,\ldots) \Rightarrow Invariant(p,\ldots)   R(\langle p,\ldots\rangle,\langle p',\ldots\rangle) \land Invariant(p,\ldots) \Rightarrow Invariant(p',\ldots)   Invariant(p,q,x,y,v,r,a) :\Leftrightarrow   (p=1\lor p=2\lor p=3) \land (q=1\lor q=2) \land   (x=0\lor x=1) \land (v=0\lor v=1) \land (r=0\lor r=1) \land (a=0\lor a=1) \land   (p=1\Rightarrow q=1\land r=0\land a=0) \land   (p=2\Rightarrow r=1) \land   (p=3\Rightarrow r=0) \land   (q=1\Rightarrow a=0) \land   (q=2\Rightarrow (p=2\lor p=3) \land a=1\land y=x) \land   (r=1\Rightarrow p=2\land v=x)
```

The invariant captures the essence of the protocol.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

5/66

The Verification Task in PVS (Contd)


```
p = 1 AND q = 1 AND (x = 0) OR x = 1) AND
  v = 0 AND r = 0 AND a = 0
Step: bool =
  S1 OR S2 OR S3 OR R1 OR R2
Property: bool =
 q = 2 \Rightarrow y = x
Invariant(p, q, x, y, v, r, a: nat): bool =
  (p = 1 OR p = 2 OR p = 3) AND
  (q = 1 OR q = 2) AND
  (x = 0 OR x = 1) AND
  (v = 0 \text{ OR } v = 1) \text{ AND}
  (r = 0 OR r = 1) AND
  (a = 0 OR a = 1) AND
  (p = 1 \Rightarrow q = 1 \text{ AND } r = 0 \text{ AND } a = 0) \text{ AND}
  (p = 2 \Rightarrow r = 1) AND
  (p = 3 => r = 0) AND
  (q = 1 \Rightarrow a = 0) AND
  (q = 2 \Rightarrow (p = 2 OR p = 3) AND a = 1 AND y = x) AND
  (r = 1 \Rightarrow (p = 2 \text{ AND } v = x))
```

The Verification Task in PVS


```
protocol: THEORY
REGIN
 p, q, x, y, v, r, a: nat
 p0, q0, x0, y0, v0, r0, a0: nat
  S1: bool =
   p = 1 AND p0 = 2 AND v0 = x AND r0 = 1 AND
   q0 = q AND x0 = x AND y0 = y AND v0 = v AND a0 = a
  S2: bool =
   p = 2 AND p0 = 3 AND a = 1 AND r0 = 0 AND
    qO = q AND xO = x AND yO = y AND vO = v AND aO = a
  S3: bool =
   p = 3 AND p0 = 1 AND a = 0 AND (x0 = 0) OR x0 = 1) AND
   qO = q AND yO = y AND vO = v AND rO = r AND aO = a
   q = 1 AND q0 = 2 AND r = 1 AND v0 = v AND a0 = 1 AND
   p0 = p AND x0 = x AND v0 = v AND r0 = r
  R2: bool =
   q = 2 AND q0 = 1 AND r = 0 AND a0 = 0 AND
   pO = p AND xO = x AND yO = y AND vO = v AND rO = r
```

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

6/66

The Verification Task in PVS (Contd'2)

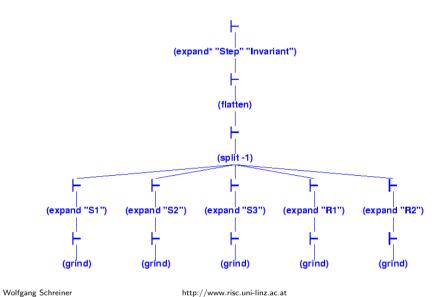

```
VCO: THEOREM
   Invariant(p, q, x, y, v, r, a) => Property

VC1: THEOREM
   Init => Invariant(p, q, x, y, v, r, a)

VC2: THEOREM
   Step AND Invariant(p, q, x, y, v, r, a) =>
        Invariant(p0, q0, x0, y0, v0, r0, a0)
END protocol
```

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 7/66 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 8/66

The Proof in PVS



A Client/Server System (Contd)

Wolfgang Schreiner

9/66

11/66

```
Server:
Server system S = \langle IS, RS \rangle.
                                                                          local given, waiting, sender
State := (\mathbb{N}_3)^3 \times (\{1,2\} \to \mathbb{N}_2)^2.
Int := \{D1, D2, F, A1, A2, W\}.
                                                                          given := 0; waiting := 0
IS(given, waiting, sender, rbuffer, sbuffer):⇔
                                                                       D: sender := receiveRequest()
   given = waiting = sender = 0 \land
                                                                             if sender = given then
   rbuffer(1) = rbuffer(2) = sbuffer(1) = sbuffer(2) = 0.
                                                                                if waiting = 0 then
                                                                       F:
                                                                                   given := 0
RS(I, \langle given, waiting, sender, rbuffer, sbuffer \rangle,
      \langle given', waiting', sender', rbuffer', sbuffer' \rangle) :\Leftrightarrow
                                                                       A1:
                                                                                   given := waiting:
   \exists i \in \{1,2\}:
                                                                                   waiting := 0
     (I = D_i \land sender = 0 \land rbuffer(i) \neq 0 \land
                                                                                   sendAnswer(given)
      sender' = i \land rbuffer'(i) = 0 \land
                                                                                endif
      U(given, waiting, sbuffer) \land
                                                                             elsif given = 0 then
     \forall i \in \{1,2\} \setminus \{i\} : U_i(rbuffer)) \vee
                                                                               given := sender
                                                                                sendAnswer(given)
U(x_1,\ldots,x_n):\Leftrightarrow x_1'=x_1\wedge\ldots\wedge x_n'=x_n.
                                                                                waiting := sender
U_i(x_1,\ldots,x_n):\Leftrightarrow x_1'(j)=x_1(j)\wedge\ldots\wedge x_n'(j)=x_n(j).
                                                                             endif
                                                                          endloop
```

http://www.risc.uni-linz.ac.at

end Server

A Client/Server System


```
Client system C_i = \langle IC_i, RC_i \rangle.
State := PC \times \mathbb{N}_2 \times \mathbb{N}_2.
                                                                           Client(ident):
Int := \{R_i, S_i, C_i\}.
                                                                             param ident
                                                                          begin
IC:(pc, request, answer):⇔
                                                                             1000
  pc = R \land request = 0 \land answer = 0.
RC_i(I, \langle pc, request, answer \rangle,
                                                                           R: sendRequest()
      \langle pc', request', answer' \rangle) :\Leftrightarrow
                                                                           S: receiveAnswer()
  (I = R_i \land pc = R \land request = 0 \land
                                                                           C: // critical region
      pc' = S \land request' = 1 \land answer' = answer) \lor
  (I = S_i \land pc = S \land answer \neq 0 \land
                                                                                sendRequest()
      pc' = C \land request' = request \land answer' = 0) \lor
                                                                             endloop
  (I = C_i \land pc = C \land request = 0 \land
                                                                           end Client
      pc' = R \land request' = 1 \land answer' = answer) \lor
  (I = \overline{REQ_i} \land request \neq 0 \land
      pc' = pc \land request' = 0 \land answer' = answer) \lor
  (I = ANS: \land
      pc' = pc \land request' = request \land answer' = 1).
```

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

A Client/Server System (Contd'2)

10/66

```
local given, waiting, sender
(I = F \land sender \neq 0 \land sender = given \land waiting = 0 \land
                                                                    given := 0; waiting := 0
  given' = 0 \land sender' = 0 \land
   U(waiting, rbuffer, sbuffer)) \lor
                                                                  D: sender := receiveRequest()
                                                                       if sender = given then
(I = A1 \land sender \neq 0 \land sbuffer(waiting) = 0 \land
                                                                         if waiting = 0 then
   sender = given \land waiting \neq 0 \land
                                                                 F:
                                                                            given := 0
  given' = waiting \land waiting' = 0 \land
                                                                         else
   sbuffer'(waiting) = 1 \land sender' = 0 \land
                                                                 A1:
                                                                            given := waiting:
   U(rbuffer) \land
                                                                            waiting := 0
  \forall j \in \{1,2\} \setminus \{waiting\} : U_i(sbuffer)) \lor
                                                                            sendAnswer(given)
(I = A2 \land sender \neq 0 \land sbuffer(sender) = 0 \land
                                                                       elsif given = 0 then
  sender \neq given \land given = 0 \land
                                                                        given := sender
   given' = sender \land
                                                                         sendAnswer(given)
  sbuffer'(sender) = 1 \land sender' = 0 \land
   U(waiting, rbuffer) \land
                                                                         waiting := sender
  \forall j \in \{1,2\} \setminus \{sender\} : U_i(sbuffer)) \lor
                                                                       endif
                                                                    endloop
                                                                  end Server
                                                                                                    12/66
```

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

A Client/Server System (Contd'3)


```
(I = W \land sender \neq 0 \land sender \neq given \land given \neq 0 \land
  waiting' := sender \land sender' = 0 \land
  U(given, rbuffer, sbuffer)) \lor
```

```
\exists i \in \{1,2\}:
   (I = REQ_i \land rbuffer'(i) = 1 \land
       U(given, waiting, sender, sbuffer) \land
      \forall i \in \{1,2\} \setminus \{i\} : U_i(rbuffer)) \vee
   (I = \overline{ANS_i} \land sbuffer(i) \neq 0 \land
      sbuffer'(i) = 0 \land
      U(given, waiting, sender, rbuffer) \land
      \forall j \in \{1,2\} \setminus \{i\} : U_i(sbuffer)).
```

```
Server:
  local given, waiting, sender
  given := 0; waiting := 0
 loop
D: sender := receiveRequest()
    if sender = given then
      if waiting = 0 then
F:
        given := 0
      else
        given := waiting;
A1:
        waiting := 0
        sendAnswer(given)
      endif
    elsif given = 0 then
     given := sender
      sendAnswer(given)
      waiting := sender
    endif
```

Wolfgang Schreiner

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

endloop end Server

13/66

15/66

The Verification Task

$$\langle I,R\rangle \models \Box \neg (pc_1 = C \land pc_2 = C)$$

```
Invariant(pc, request, answer, sender, given, waiting, rbuffer, sbuffer): ⇔
  \forall i \in \{1, 2\}:
     (pc(i) = C \lor sbuffer(i) = 1 \lor answer(i) = 1 \Rightarrow
        given = i \land
        \forall i: i \neq i \Rightarrow pc(i) \neq C \land sbuffer(i) = 0 \land answer(i) = 0) \land
     (pc(i) = R \Rightarrow
        sbuffer(i) = 0 \land answer(i) = 0 \land
        (i = given \Leftrightarrow request(i) = 1 \lor rbuffer(i) = 1 \lor sender = i) \land
         (request(i) = 0 \lor rbuffer(i) = 0)) \land
     (pc(i) = S \Rightarrow
        (sbuffer(i) = 1 \lor answer(i) = 1 \Rightarrow
           request(i) = 0 \land rbuffer(i) = 0 \land sender \neq i) \land
        (i \neq given \Rightarrow
           request(i) = 0 \lor rbuffer(i) = 0)) \land
     (pc(i) = C \Rightarrow
        request(i) = 0 \land rbuffer(i) = 0 \land sender \neq i \land
        sbuffer(i) = 0 \land answer(i) = 0) \land
```

http://www.risc.uni-linz.ac.at

A Client/Server System (Contd'4)


```
State := (\{1,2\} \to PC) \times (\{1,2\} \to \mathbb{N}_2)^2 \times (\mathbb{N}_3)^2 \times (\{1,2\} \to \mathbb{N}_2)^2
I(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) : \Leftrightarrow
   \forall i \in \{1, 2\} : IC(pc_i, request_i, answer_i) \land
   IS(given, waiting, sender, rbuffer, sbuffer)
R(\langle pc, request, answer, given, waiting, sender, rbuffer, sbuffer \rangle,
   ⟨pc', request', answer', given', waiting', sender', rbuffer', sbuffer'⟩):⇔
   (\exists i \in \{1,2\} : RC_{local}(\langle pc_i, request_i, answer_i \rangle, \langle pc_i', request_i', answer_i' \rangle) \land
       \langle given, waiting, sender, rbuffer, sbuffer \rangle =
          ⟨given', waiting', sender', rbuffer', sbuffer'⟩) ∨
   (RS_{local}(\langle given, waiting, sender, rbuffer, sbuffer),
               \langle given', waiting', sender', rbuffer', sbuffer' \rangle \land \land
       \forall i \in \{1,2\} : \langle pc_i, request_i, answer_i \rangle = \langle pc'_i, request'_i, answer'_i \rangle \} \vee
   (\exists i \in \{1,2\} : External(i, \langle request_i, answer_i, rbuffer, sbuffer),
                                       ⟨request':, answer':, rbuffer', sbuffer'⟩) ∧
       pc = pc' \land \langle sender, waiting, given \rangle = \langle sender', waiting', given' \rangle
```

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

14/66

The Verification Task (Contd)


```
(sender = 0 \land (request(i) = 1 \lor rbuffer(i) = 1) \Rightarrow
   sbuffer(i) = 0 \land answer(i) = 0) \land
(sender = i \Rightarrow
   (waiting \neq i) \land
   (sender = given \land pc(i) = R \Rightarrow
      request(i) = 0 \land rbuffer(i) = 0) \land
   (pc(i) = S \land i \neq given \Rightarrow
      request(i) = 0 \land rbuffer(i) = 0) \land
   (pc(i) = S \land i = given \Rightarrow
      request(i) = 0 \lor rbuffer(i) = 0)) \land
   given \neq i \land pc_i = S \land request_i = 0 \land rbuffer(i) = 0 \land
   sbuffer_i = 0 \land answer(i) = 0) \land
(sbuffer(i) = 1 \Rightarrow
   answer(i) = 0 \land request(i) = 0 \land rbuffer(i) = 0
```

As usual, the invariant has been elaborated in the course of the proof.

Wolfgang Schreiner 16/66 http://www.risc.uni-linz.ac.at

The Verification Task in PVS


```
clientServer: THEORY
REGIN
 % client indices and program counter constants
 Index: TYPE+ = \{ x: nat \mid x = 1 \text{ OR } x = 2 \} CONTAINING 1
  Index0: TYPE+ = \{ x: nat \mid x < 3 \} CONTAINING 0
 PC: TYPE+ = \{R, S, C\}
 % client states
  pc, pc0: [ Index -> PC ]
  request, request0: [ Index -> bool ]
  answer, answer0: [ Index -> bool ]
  % server states
  given, given0: Index0
  waiting, waiting0: Index0
  sender, sender0: Index0
  rbuffer, rbuffer0: [ Index -> bool ]
  sbuffer, sbuffer0: [ Index -> bool ]
```

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

17/66

The Verification Task in PVS (Contd'2)


```
______
% transition relation
% ------
RC(pc: PC, request: bool, answer: bool,
  pc0: PC, request0: bool, answer0: bool): bool =
 (pc = R AND request = FALSE AND
   pc0 = S AND request0 = TRUE AND answer0 = answer) OR
 (pc = S AND answer = TRUE AND
   pc0 = C AND request0 = request AND answer0 = FALSE) OR
 (pc = C AND request = FALSE AND
   pc0 = R and request0 = TRUE AND answer0 = answer)
RS(given: Index0, waiting: Index0, sender: Index0,
    rbuffer: [ Index -> bool ], sbuffer: [ Index -> bool ],
  given0: Index0, waiting0: Index0, sender0: Index0,
    rbuffer0: [ Index -> bool ], sbuffer0: [ Index -> bool ]): bool =
   sender = 0 AND rbuffer(i) = TRUE AND
   sender0 = i AND rbuffer0(i) = FALSE AND
   given = givenO AND waiting = waitingO AND sbuffer = sbufferO AND
   FORALL j: j /= i => rbuffer(j) = rbuffer0(j)) OR
```

The Verification Task in PVS (Contd)

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

18/66

The Verification Task in PVS (Contd'3)


```
(sender /= 0 AND sender = given AND waiting = 0 AND
 given0 = 0 AND sender0 = 0 AND
 waiting = waitingO AND rbuffer = rbufferO AND sbuffer = sbufferO) OR
(sender /= 0 AND
 sender = given AND waiting /= 0 AND
 sbuffer(waiting) = FALSE AND % change order for type-checking
 given0 = waiting AND waiting0 = 0 AND
 sbuffer0(waiting) = TRUE AND sender0 = 0 AND
 rbuffer = rbuffer0 AND
 (FORALL j: j /= waiting => sbuffer(j) = sbuffer0(j))) OR
(sender /= 0 AND sbuffer(sender) = FALSE AND
 sender /= given AND given = 0 AND
 given0 = sender AND
 sbuffer0(sender) = TRUE AND sender0 = 0 AND
 waiting = waitingO AND rbuffer = rbufferO AND
 (FORALL j: j /= sender => sbuffer(j) = sbuffer0(j))) OR
(sender /= 0 AND sender /= given AND given /= 0 AND
 waiting0 = sender AND sender0 = 0 AND
 given = given0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0)
```

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 19/66 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 20/66

The Verification Task in PVS (Contd'4)


```
External(i: Index.
         pc: PC, request: bool, answer: bool,
         pc0: PC, request0: bool, answer0: bool,
         given: Index0, waiting: Index0, sender: Index0,
           rbuffer: [ Index -> bool ], sbuffer: [ Index -> bool ],
         given0: Index0, waiting0: Index0, sender0: Index0,
            rbuffer0: [ Index -> bool ], sbuffer0: [ Index -> bool ]): bool =
   (request = TRUE AND
     pc0 = pc AND request0 = FALSE AND answer0 = answer AND
     rbufferO(i) = TRUE AND
     given = givenO AND waiting = waitingO AND sender = senderO AND
     sbuffer = sbuffer0 AND
     (FORALL j: j /= i => rbuffer(j) = rbuffer0(j))) OR
   (pc0 = pc AND request0 = request AND answer0 = TRUE AND
     sbuffer(i) = TRUE AND sbuffer0(i) = FALSE AND
     given = givenO AND waiting = waitingO AND sender = senderO AND
     rbuffer = rbuffer0 AND
     (FORALL j: j /= i => sbuffer(j) = sbuffer0(j)))
```

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

21/66

The Verification Task in PVS (Contd'6)


```
_____
% invariant
Invariant(pc: [Index->PC], request: [Index -> bool],
          answer: [Index -> bool].
         given: Index0, waiting: Index0, sender: Index0,
          rbuffer: [Index -> bool], sbuffer: [Index->bool]): bool =
 FORALL i:
   (pc(i) = C OR sbuffer(i) = TRUE OR answer(i) = TRUE =>
     given = i AND
     FORALL j: j /= i =>
        pc(j) /= C AND
        sbuffer(j) = FALSE AND answer(j) = FALSE) AND
   (pc(i) = R =>
     sbuffer(i) = FALSE AND answer(i) = FALSE AND
     (i /= given =>
       request(i) = FALSE AND rbuffer(i) = FALSE AND sender /= i)
       request(i) = TRUE OR rbuffer(i) = TRUE OR sender = i) AND
     (request(i) = FALSE OR rbuffer(i) = FALSE)) AND
```

The Verification Task in PVS (Contd'5)


```
Next: bool =
 ((EXISTS i: RC(pc (i), request (i), answer (i),
                pc0(i), request0(i), answer0(i)) AND
     (FORALL i: i /= i =>
      pc(j) = pc0(j) AND request(j) = request0(j) AND
      answer(j) = answer0(j))) AND
   given = givenO AND waiting = waitingO AND sender = senderO AND
   rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR
  (RS(given, waiting, sender, rbuffer, sbuffer,
     given0, waiting0, sender0, rbuffer0, sbuffer0) AND
   (FORALL j: pc(j) = pcO(j) AND request(j) = requestO(j) AND
              answer(j) = answer0(j))) OR
  (EXISTS i:
    External(i, pc (i), request (i), answer (i),
                pc0(i), request0(i), answer0(i),
             given, waiting, sender, rbuffer, sbuffer,
             given0, waiting0, sender0, rbuffer0, sbuffer0) AND
     (FORALL i: i /= i =>
      pc(j) = pc0(j) AND request(j) = request0(j) AND
      answer(i) = answer0(i)))
```

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

22/66

The Verification Task in PVS (Contd'7)


```
(pc(i) = S =>
   (sbuffer(i) = TRUE OR answer(i) = TRUE =>
     request(i) = FALSE AND rbuffer(i) = FALSE AND sender /= i) AND
   (i /= given =>
     request(i) = FALSE OR rbuffer(i) = FALSE)) AND
 (pc(i) = C =>
   request(i) = FALSE AND rbuffer(i) = FALSE AND sender /= i AND
   sbuffer(i) = FALSE AND answer(i) = FALSE) AND
 (sender = 0 AND (request(i) = TRUE OR rbuffer(i) = TRUE) =>
   sbuffer(i) = FALSE AND answer(i) = FALSE) AND
 (sender = i =>
   (sender = given AND pc(i) = R =>
     request(i) = FALSE and rbuffer(i) = FALSE) AND
   (waiting /= i) AND
   (pc(i) = S AND i /= given =>
    request(i) = FALSE AND rbuffer(i) = FALSE) AND
   (pc(i) = S AND i = given =>
     request(i) = FALSE OR rbuffer(i) = FALSE)) AND
```

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 23/66 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 24/66

The Verification Task in PVS (Contd'8)

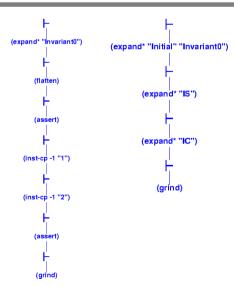
Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

25/66

The Proof in PVS

Proofs that the system invariant implies the mutual exclusion property and that the initial condition implies the invariant.



The Verification Task in PVS (Contd'9)


```
% -----
% invariance proof
% ------
Inv1: THEOREM
   Initial =>
   Invariant(pc, request, answer,
        given, waiting, sender, rbuffer, sbuffer)

Inv2: THEOREM
   Invariant(pc, request, answer,
        given, waiting, sender, rbuffer, sbuffer) AND Next =>
   Invariant(pc0, request0, answer0,
        given0, waiting0, sender0, rbuffer0, sbuffer0)
END clientServer
```

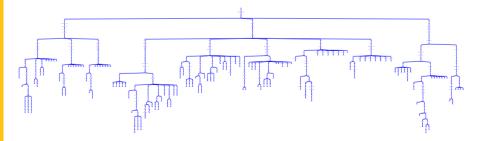
Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

26/66

The Proof in PVS

Proof that every system transition preserves the invariant.



- 10 subproofs, one for each transition.
 - Three from client, five from server, two from communication system.
 - Download and investigate from course Web site.

Only with computer support, verification proofs become manageable.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 28/66

Wolfgang Schreiner

 ${\sf http://www.risc.uni\text{-}linz.ac.at}$

27/66

- 1. Verification by Computer-Supported Proving
- 2. Verification by Automatic Model Checking

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

29/66

Finite State Automata

A (variant of a) labeled transition system in a finite state space.

- Take finite sets State and Label.
 - The state space State.
 - The alphabet *Label*.
- A (finite state) automaton $A = \langle I, R, F \rangle$ over *State* and *Label*:
 - A set of initial states $I \subseteq State$.
 - A labeled transition relation $R \subseteq Label \times State \times State$.
 - A set of final states $F \subseteq State$.
 - Büchi automata: *F* is called the set of accepting states.

We will only consider infinite runs of Büchi automata.

The Basic Approach

Translation of the original problem to a problem in automata theory.

- Original problem: $S \models P$.
 - $S = \langle I, R \rangle$, PLTL formula P.
 - Does property *P* hold for every run of system *S*?
- Construct system automaton S_A with language $\mathcal{L}(S_A)$.
 - A language is a set of infinite words.
 - Each such word describes a system run.
 - $\mathcal{L}(S_A)$ describes the set of runs of S.
- Construct property automaton P_A with language $\mathcal{L}(P_A)$.
 - $\mathcal{L}(P_A)$ describes the set of runs satisfying P.
- Equivalent Problem: $\mathcal{L}(S_A) \subseteq \mathcal{L}(P_A)$.
 - The language of S_A must be contained in the language of P_A .

There exists an efficient algorithm to solve this problem.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

30/66

Runs and Languages

- An infinite run $r = s_0 \xrightarrow{l_0} s_1 \xrightarrow{l_1} s_2 \xrightarrow{l_2} \dots$ of automaton A:
 - $s_0 \in I$ and $R(I_i, s_i, s_{i+1})$ for all $i \in \mathbb{N}$.
 - Run r is said to read the infinite word $w(r) := \langle l_0, l_1, l_2, \ldots \rangle$.
- $A = \langle I, R, F \rangle$ accepts an infinite run r:
 - Some state $s \in F$ occurs infinitely often in r.
 - This notion of acceptance is also called Büchi acceptance.
- The language $\mathcal{L}(A)$ of automaton A:

 - The set of words which are read by the runs accepted by A.

http://www.risc.uni-linz.ac.at

- **Example:** $\mathcal{L}(A) = (a^*bb^*a)^*a^{\omega} + (a^*bb^*a)^{\omega} = (b^*a)^{\omega}$.
 - $w^i = ww \dots w$ (*i* occurrences of *w*).
 - $w^* = \{w^i : i \in \mathbb{N}\} = \{\langle\rangle, w, ww, www, \ldots\}.$
 - $\mathbf{w}^{\omega} = \mathbf{w}\mathbf{w}\mathbf{w}\mathbf{w}\dots$ (infinitely often).
 - An infinite repetition of an arbitrary number of b followed by a.

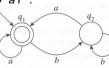


Figure 9.1
A finite automaton.

Edmund Clarke: "Model Checking", 1999.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 31/66 Wolfgang Schreiner

A Finite State System as an Automaton

The automaton $S_A = \langle I, R, F \rangle$ for a finite state system $S = \langle I_S, R_S \rangle$:

- $State := State_S \cup \{\iota\}.$
 - The state space $State_S$ of S is finite; additional state ι ("iota").
- Label := $\mathbb{P}(AP)$.
 - Finite set *AP* of atomic propositions.

All PLTL formulas are built from this set only.

- Powerset $\mathbb{P}(S) := \{s : s \subseteq S\}.$
- Every element of *Label* is thus a set of atomic propositions.
- $I := \{\iota\}.$
 - Single initial state ι .
- $R(I,s,s') : \Leftrightarrow I = L(s') \wedge (R_S(s,s') \vee (s = \iota \wedge I_S(s'))).$
 - $L(s) := \{ p \in AP : s \models p \}.$
 - Each transition is labeled by the set of atomic propositions satisfied by the successor state.
 - Thus all atomic propositions are evaluated on the successor state.
- F := State.
 - Every state is accepting.

Wolfgang Schreiner

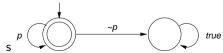
http://www.risc.uni-linz.ac.at

33/66

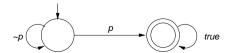
A System Property as an Automaton

Also an PLTL formula can be translated to a finite state automaton.

- We need the automaton P_A for a PLTL property P.
 - Requirement: $r \models P \Leftrightarrow P_A$ accepts r_I .
 - A run satisfies property P if and only if automaton A_P accepts the labeled version of the run.
- **Example**: $\Box p$.



■ Example: ◇p



A Finite State System as an Automaton

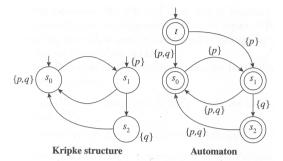


Figure 9.2
Transforming a Kripke structure into an automaton.

Edmund Clarke et al: "Model Checking", 1999.

If $r = s_0 \to s_1 \to s_2 \to \dots$ is a run of S, then S_A accepts the labelled version $r_I := \iota \xrightarrow{L(s_0)} s_0 \xrightarrow{L(s_1)} s_1 \xrightarrow{L(s_2)} s_2 \xrightarrow{L(s_3)} \dots$ of r.

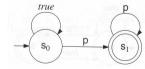
Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

34/66

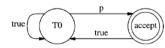
Further Examples

Example: $\Diamond \Box p$.



Gerard Holzmann: "The Spin Model Checker", 2004

Example: $\Box \Diamond p$.



Gerard Holzmann: "The Model Checker Spin", 1997.

We will give later an algorithm to convert arbitrary PLTL formulas to automata.

System Properties

- State equivalence: L(s) = L(t).
 - Both states have the same labels.
 - Both states satisfy the same atomic propositions in *AP*.
- Run equivalence: $w(r_l) = w(r'_l)$.
 - Both runs have the same sequences of labels.
 - Both runs satisfy the same PLTL formulas built over AP.
- Indistinguishability: $w(r_l) = w(r'_l) \Rightarrow (r \models P \Leftrightarrow r' \models R)$
 - PLTL formula P cannot distinguish between runs r and r' whose labeled versions read the same words.
- Consequence: $S \models P \Leftrightarrow \mathcal{L}(S_A) \subseteq \mathcal{L}(P_A)$.
 - Proof that, if every run of S satisfies P, then every word $w(r_l)$ in $\mathcal{L}(S_A)$ equals some word $w(r_l')$ in $\mathcal{L}(P_A)$, and vice versa.
 - "Vice versa" direction relies on indistinguishability property.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

37/66

Synchronized Product of Two Automata

Given two finite automata $A = \langle I_A, R_A, State_A \rangle$ and $B = \langle I_B, R_B, F_B \rangle$.

- Synchronized product $A \otimes B = \langle I, R, F \rangle$.
 - State := $State_A \times State_B$.
 - Label := $Label_A = Label_B$.
 - $I := I_A \times I_B$.
 - $R(I, \langle s_A, s_B \rangle, \langle s_A', s_B' \rangle) : \Leftrightarrow R_A(I, s_A, s_A') \wedge R_B(I, s_B, s_B').$
 - $F := State_A \times F_B$.

Special case where all states of automaton A are accepting.

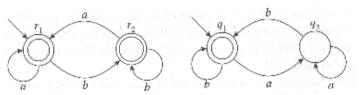
The Next Steps

- Problem: $\mathcal{L}(S_A) \subseteq \mathcal{L}(P_A)$
 - Equivalent to: $\mathcal{L}(S_A) \cap \overline{\mathcal{L}(P_A)} = \emptyset$.
 - Complement $\overline{L} := \{ w : w \notin L \}.$
 - Equivalent to: $\mathcal{L}(S_A) \cap \mathcal{L}(\neg P_A) = \emptyset$
 - $\overline{\mathcal{L}(A)} = \mathcal{L}(\neg A).$
- **Equivalent Problem**: $\mathcal{L}(S_A) \cap \mathcal{L}((\neg P)_A) = \emptyset$.
 - We will introduce the synchronized product automaton $A \otimes B$.
 - \blacksquare A transition of $A \otimes B$ represents a simultaneous transition of A and B.
 - Property: $\mathcal{L}(A) \cap \mathcal{L}(B) = \mathcal{L}(A \otimes B)$.
- Final Problem: $\mathcal{L}(S_A \otimes (\neg P)_A) = \emptyset$.
 - We have to check whether the language of this automaton is empty.
 - We have to look for a word w accepted by this automaton.
 - If no such w exists, then $S \models P$.
 - If such a $w = w(r_l)$ exists, then r is a counterexample, i.e. a run of S such that $r \not\models P$.

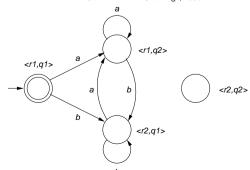
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 38/66

Synchronized Product of Two Automata

40/66



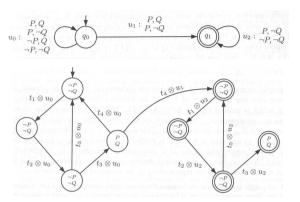
Edmund Clarke: "Model Checking", 1999

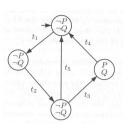


Wolfgang Schreiner http://www.risc.uni-linz.ac.at 39/66 Wolfgang Schreiner http://www.risc.uni-linz.ac.at

Example

Check whether $S \models \Box(P \Rightarrow \bigcirc \Diamond Q)$.





B. Berard et al: "Systems and Software Verification", 2001

The product automaton accepts a run, thus the property does not hold.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 41/66

Checking Emptiness

Find in the reachability graph an SCC that contains an accepting state.

- We have to find an accepting state with a cycle back to itself.
 - Any such state belongs to some SCC.
 - Any SCC with an accepting state has such a cycle.
 - Thus this is a sufficient and necessary condition.
- \blacksquare Any such a state s defines a counterexample run r.
 - $r = \iota \to \ldots \to s \to \ldots \to s \to \ldots \to s \to \ldots$
 - Finite prefix $\iota \to \ldots \to s$ from initial state ι to s.
 - Infinite repetition of cycle $s \rightarrow ... \rightarrow s$ from s to itself.

This is the core problem of PLTL model checking; it can be solved by a *depth-first search* algorithm.

Checking Emptiness

How to check whether $\mathcal{L}(A)$ is non-empty?

- Suppose $A = \langle I, R, F \rangle$ accepts a run r.
 - Then *r* contains infinitely many occurrences of some state in *F*.
 - Since State is finite, in some suffix r' every state occurs infinit. often.
 - Thus every state in r' is reachable from every other state in r'.
- \blacksquare C is a strongly connected component (SCC) of graph G if
 - C is a subgraph of G,
 - every node in C is reachable from every other node in C along a path entirely contained in C, and
 - \subset C is maximal (not a subgraph of any other SCC of G).
- Thus the states in r' are contained in an SCC C.
 - C is reachable from an initial state.
 - C contains an accepting state.
 - Conversely, any such SCC generates an accepting run.

 $\mathcal{L}(A)$ is non-empty if and only if the reachability graph of A has an SCC that contains an accepting state.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 42/66

Basic Structure of Depth-First Search

Visit all states of the reachability graph of an automaton $\langle \{\iota\}, R, F \rangle$.

```
global
                                                    proc visit(s)
  StateSpace\ V := \{\}
                                                        V := V \cup \{s\}
   Stack D := \langle \rangle
                                                       for \langle I, s, s' \rangle \in R do
                                                          if s' \notin V
proc main()
                                                             push(D, s')
  push(D, \iota)
                                                             visit(s')
   visit(\iota)
                                                             pop(D)
  pop(D)
                                                          end
end
                                                       end
                                                    end
```

State space V holds all states visited so far; stack D holds path from initial state to currently visited state.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 43/66 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 44/66

Checking State Properties

Apply depth-first search to checking a state property (assertion).

```
global
                                                    function search(s)
  StateSpace V := \{\}
                                                      V := V \cup \{s\}
  Stack D := \langle \rangle
                                                      if \neg check(s) then
                                                        print D
proc main()
                                                        return true
  // r becomes true, iff
  // counterexample run is found
                                                      for \langle I, s, s' \rangle \in R do
                                                         if s' \notin V
  push(D, \iota)
  r := search(\iota)
                                                            push(D, s')
                                                            r := search(s')
  pop(D)
end
                                                            pop(D)
                                                            if r then return true end
                                                         end
                                                      end
                                                      return false
                                                    end
```

Stack D can be used to print counterexample run.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

Depth-First Search for Acceptance Cycle

45/66

- At each call of search(s),
 - s is a reachable state,
 - $lue{D}$ describes a path from ι to s.
- search calls searchCycle(s)
 - on a reachable accepting state s
 - in order to find a cycle from s to itself.
- At each call of searchCycle(s),
 - \blacksquare s is a state reachable from a reachable accepting state s_a ,
 - D describes a path from ι to s_a ,
 - $D \to C$ describes a path from ι to s (via s_a).
- Thus we have found an accepting cycle $D \rightarrow C \rightarrow s'$, if
 - there is a transition $s \stackrel{l}{\rightarrow} s'$,
 - \blacksquare such that s' is contained in D.

If the algorithm returns "true", there exists a violating run; the converse follows from the exhaustiveness of the search.

Depth-First Search for Acceptance Cycle


```
global
                                                    boolean search(s)
                                                       V := V \cup \{s\}
  Stack C := \langle \rangle
                                                      for \langle I, s, s' \rangle \in R do
                                                         if s' \notin V
                                                            push(D, s')
proc main()
  push(D, \iota); r := search(\iota); pop(D)
                                                            r := search(s')
                                                            pop(D)
                                                           if r then return true end
function searchCycle(s)
                                                         end
  for \langle I, s, s' \rangle \in R do
                                                      end
     if has(D, s') then
                                                      if s \in F then
       print D; print C; print s'
                                                         r := searchCycle(s)
       return true
                                                        if r then return true end
     else if \neg has(C, s') then
                                                      end
       push(C, s'):
                                                      return false
       r := searchCycle(s')
                                                    end
       pop(C):
       if r then return true end
     end
  end
  return false
end
```

Implementing the Search

46/66

 \blacksquare The state space V,

Wolfgang Schreiner

is implemented by a hash table for efficiently checking $s' \notin V$.

http://www.risc.uni-linz.ac.at

- Rather than using explicit stacks *D* and *C*,
 - each state node has two bits d and c.
 - d is set to denote that the state is in stack D.
 - c is set to denote that the state is in stack C.
- The counterexample is printed,
 - by searching, starting with ι , the unique sequence of reachable nodes where d is set until the accepting node s_a is found, and
 - by searching, starting with a successor of s_a , the unique sequence of reachable nodes where c is set until the cycle is detected.
- Furthermore, it is not necessary to reset the *c* bits, because
 - search first explores all states reachable by an accepting state s before trying to find a cycle from s; from this, one can show that
 - called with the first accepting node s that is reachable from itself, search2 will not encounter nodes with c bits set in previous searches.
 - With this improvement, every state is only visited twice.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 47/66 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 48/66

Complexity of the Search

The complexity of checking $S \models P$ is as follows.

- Let |P| denote the number of subformulas of P.
- $|State_{(\neg P)_A}| = O(2^{|P|}).$
- $|State_{A\otimes B}| = |State_A| \cdot |State_B|.$
- $|State_{S_A\otimes (\neg P)_A}| = O(|State_{S_A}| \cdot 2^{|P|})$
- The time complexity of *search* is linear in the size of *State*.
 - Actually, in the number of reachable states (typically much smaller).
 - Only true for the improved variant where the c bits are not reset.
 - Then every state is visited at most twice.

PLTL model checking is linear in the number of reachable states but exponential in the size of the formula.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

49/66

On the Fly Model Checking

For checking $\mathcal{L}(S_A \otimes (\neg P)_A) = \emptyset$, it is not necessary to construct the states of S_A in advance.

- Only the property automaton $(\neg P)_A$ is constructed in advance.
 - This automaton has comparatively small state space.
- The system automaton S_A is constructed on the fly.
 - Construction is guided by $(\neg P)_A$ while computing $S_A \otimes (\neg P)_A$.
 - Only that part of the reachability graph of S_A is expanded that is consistent with $(\neg P)_A$ (i.e. can lead to a counterexample run).
- Typically only a part of the state space of S_A is investigated.
 - A smaller part, if a counterexample run is detected early.
 - A larger part, if no counterexample run is detected.

Unreachable system states and system states that are not along possible counterexample runs are never constructed.

The Overall Process

Basic PLTL model checking for deciding $S \models P$.

- Convert system S to automaton S_A .
 - Atomic propositions of PLTL formula are evaluated on each state.
- Convert negation of PLTL formula P to automaton $(\neg P)_A$.
 - How to do so, remains to be described.
- Construct synchronized product automaton $S_A \otimes (\neg P)_A$.
 - After that, formula labels are not needed any more.
- Find SCC in reachability-graph of product automaton.
 - A purely graph-theoretical problem that can be efficiently solved.
 - Time complexity is linear in the size of the state space of the system but exponential in the size of the formula to be checked.
 - Weak scheduling fairness with k components: runtime is increased by factor k + 2 (worst-case, "in practice just factor 2" [Holzmann]).

The basic approach immediately leads to *state space explosion*; further improvements are needed to make it practical.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

On the Fly Model Checking

50/66

Expansion of state $s = \langle s_0, s_1 \rangle$ of product automaton $S_A \otimes (\neg P)_A$ into the set R(s) of transitions from s (for $\langle I, s, s' \rangle \in R(s)$ do ...).

- Let S_1' be the set of all successors of state s_1 of $(\neg P)_A$.
 - Property automaton $(\neg P)_A$ has been precomputed.
- Let S'_0 be the set of all successors of state s_0 of S_A .
 - \blacksquare Computed on the fly by applying system transition relation to s_0 .
- $\blacksquare R(s) := \{ \langle I, \langle s_0, s_1 \rangle, \langle s'_0, s'_1 \rangle \rangle : s'_0 \in S'_0 \land s'_1 \in S'_1 \land s_1 \xrightarrow{I} s'_1 \land L(s'_0) \in I \}.$
 - Choose candidate $s_0' \in S_0'$.
 - Determine set of atomic propositions $L(s'_0)$ true in s'_0 .
 - If $L(s'_0)$ is not consistent with the label of any transition $\langle s_0, s_1 \rangle \stackrel{I}{\rightarrow} \langle s'_0, s'_1 \rangle$ of the proposition automaton, s'_0 it is ignored.
 - Otherwise, R is extended by every transition $\langle s_0, s_1 \rangle \stackrel{I}{\rightarrow} \langle s_0', s_1' \rangle$ where $L(s_0')$ is consistent with label I of transition $s_1 \stackrel{I}{\rightarrow} s_1'$.

Actually, depth-first search proceeds with first suitable successor $\langle s'_0, s'_1 \rangle$ before expanding the other candidates.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 51/66 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 52/66

The Model Checker Spin

- Spin system:
 - Gerard J. Holzmann et al, Bell Labs, 1980-.
 - Freely available since 1991.
 - Workshop series since 1995 (12th workshop "Spin 2005").
 - ACM System Software Award in 2001.
- Spin resources:
 - Web site: http://spinroot.com.
 - Survey paper: Holzmann "The Model Checker Spin", 1997.
 - Book: Holzmann "The Spin Model Checker Primer and Reference Manual", 2004.

Goal: verification of (concurrent/distributed) software models.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 53/66

The Spin System Architecture

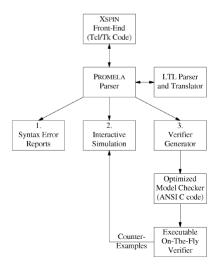


Fig. 1. The structure of SPIN simulation and verification

The Model Checker Spin

On-the-fly LTL model checking.

- Explicit state representation
 - Representation of system S by automaton S_A .
 - There exist various other approaches (discussed later).
- On-the-fly model checking.
 - \blacksquare Reachable states of S_A are only expended on demand.
 - Partial order reduction to keep state space manageable.
- LTL model checking.
 - Property P to be checked described in PLTL.
 - Propositional linear temporal logic.
 - \blacksquare Description converted into property automaton P_A .
 - Automaton accepts only system runs that do not satisfy the property.

Model checking based on automata theory.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 54/66

Features of Spin

- System description in Promela.
 - Promela = Process Meta-Language.
 - Spin = Simple Promela Interpreter.
 - Express coordination and synchronization aspects of a real system.
 - Actual computation can be e.g. handled by embedded C code.
- Simulation mode.
 - Investigate individual system behaviors.
 - Inspect system state.
 - Graphical interface XSpin for visualization.
- Verification mode.
 - Verify properties shared by all possible system behaviors.
 - Properties specified in PLTL and translated to "never claims".
 - Promela description of automaton for negation of the property.
 - Generated counter examples may be investigated in simulation mode.

Verification and simulation are tightly integrated in Spin.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 55/66 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 56/66

Some New Promela Features

Active processes, inline definitions, atomic statements, output.

```
mtype = { P, C, N }
mtype turn = P;

inline request(x, y) { atomic { x == y -> x = N } }
inline release(x, y) { atomic { x = y } }
#define FORMAT "Output: %s\n"

active proctype producer()
{
    do
        :: request(turn, P) -> printf(FORMAT, "P"); release(turn, C);
    od
}

active proctype producer()
{
    do
        :: request(turn, C) -> printf(FORMAT, "C"); release(turn, P);
    od

Wolfgang Schreiner
```

57/66

Spin Usage for Simulation

Command-line usage of spin: spin --.

Perform syntax check.

$$spin -a \ file$$

Run simulation.

No output: $spin \ file$ One line per step: $spin \ -p \ file$ One line per message: $spin \ -c \ file$ Bounded simulation: $spin \ -usteps \ file$ Reproducible simulation: $spin \ -nseed \ file$ Interactive simulation: $spin \ -i \ file$ Guided simulation: $spin \ -t \ file$

Some New Promela Features

Embedded C code.

```
/* declaration is added locally to proctype main */
c_state "float f" "Local main"

active proctype main()
{
   c_code { Pmain->f = 0; }
   do
        :: c_expr { Pmain->f <= 300 };
        c_code { Pmain->f = 1.5 * Pmain->f ; };
        c_code { printf("%4.0f\n", Pmain->f); };
   od;
}
```

Can embed computational aspects into a Promela model (only works in verification mode where a C program is generated from the model).

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

58/66

Spin Usage for Verification

- Generate never claim
 - spin -f "nformula" >neverfile
- Generate verifier.

Compile verifier.

```
cc -03 -DNP -DMEMLIM=128 -o pan pan.c
```

Execute verifier.

```
Options: ./pan --
Find non-progress cycle: ./pan -1
Weak scheduling fairness: ./pan -1 -f
Maximum search depth: ./pan -1 -f -mdepth
```

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 59/66 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 60/66

Spin Verifier Generation Options

cc -03 options -o pan pan.c

-DNP Include code for non-progress cycle detection

-DMEMLIM=N Maximum number of MB used
-DNOREDUCE Disable partial order reduction
-DCOLLAPSE Use collapse compression method

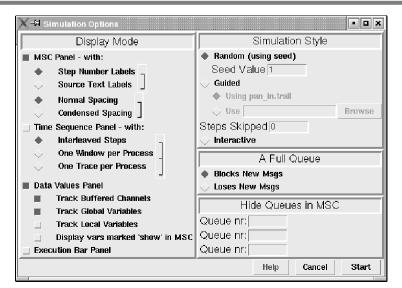
-DHC Use hash-compact method -DDBITSTATE Use bitstate hashing method

For detailed information, look up the manual.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

XSpin Simulation Options

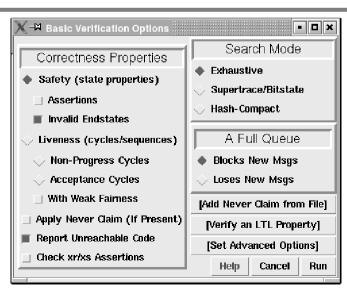
61/66



Spin Verifier Output


```
warning: for p.o. reduction to be valid the never claim must be stutter-invariant
 (never claims generated from LTL formulae are stutter-invariant)
 (Spin Version 4.2.2 -- 12 December 2004)
         + Partial Order Reduction
 Full statespace search for:
         never claim
         assertion violations
                                  + (if within scope of claim)
         acceptance cycles
                                  + (fairness disabled)
         invalid end states
                                  - (disabled by never claim)
 State-vector 52 byte, depth reached 587, errors: 0
      861 states, stored
      856 states, matched
     1717 transitions (= stored+matched)
        0 atomic steps
 hash conflicts: 1 (resolved)
 Stats on memory usage (in Megabytes):
        total actual memory usage
 2.622
Wolfgang Schreiner
                                 http://www.risc.uni-linz.ac.at
                                                                                 62/66
```

XSpin Verification Options



Wolfgang Schreiner http://www.risc.uni-linz.ac.at 63/66 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 64/66

Other Approaches to Model Checking

There are fundamentally different approaches to model checking than the automata-based one implemented in Spin.

- Symbolic Model Checking (e.g. SMV, NuSMV).
 - Core: binary decision diagrams (BDDs).
 - Data structures to represent boolean functions.
 - Can be used to describe state sets and transition relations.
 - The set of states satisfying a CTL formula P is computed as the BDD representation of a fixpoint of a function (predicate transformer) F_P .
 - If all initial system states are in this set, *P* is a system property.
 - BDD packages for efficiently performing the required operations.
- Bounded Model Checking (e.g. NuSMV2).
 - Core: propositional satisfiability.
 - Is there a truth assignment that makes propositional formula true?
 - There is a counterexample of length at most k to a LTL formula P, if and only if a particular propositional formula $F_{k,P}$ is satisfiable.
 - Problem: find suitable bound k that makes method complete.
 - SAT solvers for efficiently deciding propositional satisfiability.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 65/66

Other Approaches to Model Checking

- Counter-Example Guided Abstraction Refinement (e.g. BLAST).
 - Core: model abstraction.
 - A finite set of predicates is chosen and an abstract model of the system is constructed as a finite automaton whose states represent truth assignments of the chosen predicates.
 - The abstract model is checked for the desired property.
 - If the abstract model is error-free, the system is correct; otherwise an abstract counterexample is produced.
 - It is checked whether the abstract counterexample corresponds to a real counterexample; if yes, the system is not correct.
 - If not, the chosen set of predicates contains too little information to verify or falsify the program; new predicates are added to the set. Then the process is repeated.
 - Core problem: how to refine the abstraction.
 - Automated theorem provers are applied here.

Many model checkers for software verification use this approach.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 66/66