Specifying in the Large

Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.uni-linz.ac.at

1. A Specification Language

2. Modularization

3. Parameterization

4. Further Topics

A Specification Language

A language for building "large" specifications from "small" ones.

- Abstract Syntax: set SL of specifications sp with signatures S(sp).
 - Atomic: If sp is "atomic" (a specification as previously defined), then $sp \in SL$ with S(sp) as previously defined.
 - Union: If $sp_1 \in SL$ and $sp_2 \in SL$, then
 - $(sp_1 + sp_2) \in SL$ with $S(sp_1 + sp_2) = S(sp_1) \cup S(sp_2)$.
 - Renaming: If $sp \in SL$ and $\mu : \mathcal{S}(sp) \to \Sigma'$ is a renaming, then (rename sp by μ) $\in SL$ with $\mathcal{S}(\text{rename }sp$ by μ) = $\mu(\mathcal{S}(sp))$.
 - Forgetting: If $sp \in SL$, S is a set of sorts and Ω is a set of operations such that $(S,\Omega) \subseteq S(sp)$ and $S(sp) \setminus (S,\Omega)$ is a signature, then $(sp \text{ forget } (S,\Omega)) \in SL$ with $S(sp \text{ forget } (S,\Omega)) = S(sp) \setminus (S,\Omega)$.

A Specification Language (Contd)

- Abstract Syntax: set SL of specifications sp with signatures S(sp).
 -
 - Extension:If $sp \in SL$, S is a set of sorts and Ω is a set of operations such that $S(sp) \cup (S,\Omega)$ is a signature, then $(sp \text{ extend } (S,\Omega)) \in SL$ with $S(sp \text{ extend } (S,\Omega)) = S(sp) \cup (S,\Omega)$.
 - Modelling: if $sp \in SL$ and $\Phi \subseteq L(S(sp))$ for some logic L, then $(sp \text{ model } \Phi) \in SL$ with $S(sp \text{ model } \Phi) = S(sp)$.
 - Restricting: if $sp \in SL$ with $S(sp) = (S, \Omega)$, if $S_c \subseteq S$ is a set of sorts and if $\Omega_c \subseteq \Omega$ is a set of operations with target sorts in S_c , then $(sp \text{ generated in } S_c \text{ by } \Omega_c) \in SL$ and $(sp \text{ freely generated in } S_c \text{ by } \Omega_c) \in SL$ with $S(sp \text{ generated in } S_c \text{ by } \Omega_c) = S(sp)$ and $S(sp \text{ freely generated in } S_c \text{ by } \Omega_c) = S(sp)$.

 $\mathcal{S}(sp)$ is a signature for any specification $sp \in SL$.

Concrete Syntax


```
= (S, \Omega):
          sorts sorts
          opns operations
\mu: \Sigma \to \Sigma'
          sorts s_1, \ldots, s_k opns \omega_1, \ldots, \omega_l as
          sorts s'_1, \ldots, s'_k opns \omega'_1, \ldots, \omega'_k
Example: S(sp) = (\{s, t\}, \{m : s \times t \rightarrow s, n : t \times s \rightarrow t, n : \rightarrow s\}).
           (rename sp
              by sorts s opns n: t \times s \rightarrow t
              as sorts u opns q: t \times u \rightarrow t)
   means (rename sp by \mu) with \mu: \Sigma \to \Sigma' defined as
          \Sigma = \mathcal{S}(sp), \Sigma' = \mu(\Sigma)
          \mu(s) = u, \mu(t) = t
          \mu(m:s\times t\to s)=(m:u\times t\to u)
          \mu(n:t\times s\to t)=(g:t\times u\to t)
          \mu(n:\to s)=(n:\to u)
```

Semantics

- **Semantics**: $\mathcal{M}(sp)$ is inductively defined:
 - $\mathcal{M}(sp)$ of an atomic specification sp is as previously defined;
 - $\mathcal{M}(sp_1 + sp_2) = \{A \in Alg(\mathcal{S}(sp_1 + sp_2)) \mid (A|\mathcal{S}(sp_1)) \in \mathcal{M}(sp_1), (A|\mathcal{S}(sp_2)) \in \mathcal{M}(sp_2)\};$ $A|\Sigma \dots \Sigma$ -reduct of A
 - \blacksquare Hide sorts and operations that do not occur in signature Σ.
 - **■** \mathcal{M} (rename sp by μ) = { $A \in Alg(\mu(\mathcal{S}(sp))) \mid (A|\mu) \in \mathcal{M}(sp)$ }; $A|\mu \dots \mu$ -reduct of A
 - Rename sorts and operations as indicated by renaming μ .
 - $\mathcal{M}(sp \text{ forget } (S,\Omega)) = \mathcal{M}(sp) \mid (S(sp) \setminus (S,\Omega));$
 - $\mathcal{M}($ extend sp by $(S,\Omega)) = \{A \in Alg(S(sp) \cup (S,\Omega)) \mid (A|S(sp)) \in \mathcal{M}(sp)\};$
 - $M(sp \bmod \Phi) = \mathcal{M}(sp) \cap Mod_{\mathcal{S}(sp)}(\Phi);$
 - $\mathcal{M}(sp \text{ generated in } S_c \text{ by } \Omega_c) = \{A \in \mathcal{M}(sp) \mid A \text{ is generated in } S_c \text{ by } \Omega_c\};$

$$\mathcal{M}(sp \text{ freely generated in } S_c \text{ by } \Omega_c) = \{A \in \mathcal{M}(sp) \mid A \text{ is freely generated in } S_c \text{ by } \Omega_c\}.$$

Pragmatics

- **Operator** + builds the "union" of two specifications sp_1 and sp_2 .
 - If sp_1 and sp_2 have common sorts/operations, only those algebras of $\mathcal{M}(sp_1)$ and $\mathcal{M}(sp_2)$ contribute to this union that have the same interpretation of the common parts.
- rename may be used to avoid "name clashes".
 - If two specifications have the same sort/operator with different meaning, rename this entity in one of them before constructing the union of both specifications.
- forget hides sorts and operations.
 - For auxiliary entities that are not part of the "public" specification interface.
- **extend** introduces new sorts and operations.
 - Loose semantics of new entities.
- **model** and **(freely) generated by** filter out unintended algebras.

Properties

Take specification $sp \in SL$.

- Every algebra in $\mathcal{M}(sp)$ has signature $\mathcal{S}(sp)$.
- $\mathcal{M}(sp)$ is an abstract datatype.

The semantics of the specification language is "as expected".

Example


```
(extend (
     (loose spec
        sorts freely generated bool
        opns constr True :\rightarrow bool, False :\rightarrow bool
     endspec +
     loose spec
        sorts nat
        opns 0 :\rightarrow nat, Succ : nat \rightarrow nat
     endspec)
     freely generated
        in sorts nat
        by opns 0 :\rightarrow nat, Succ : nat \rightarrow nat)
  by opns \_ < \_ : nat \times nat \rightarrow bool)
model vars m.n: nat
  axioms
     0 < n = True
     Succ(m) < 0 = False
     Succ(m) < Succ(n) = m < n
```

A (still rather clumsy) specification of the "classical" algebra.

A Specification Language with Environments

Introduce an environment e that maps names to specifications.

- Abstract syntax: set SL(e) of specs sp with signatures S(e, sp).
 - If n is a name such that e(n) is defined, then $n \in SL(e)$

with
$$S(e, n) = S(e(n), e)$$
.

- (as before)
 - Using SL(e) and S(e, sp) rather than SL and S(sp).
- **Semantics**: $\mathcal{M}(e, sp)$ is inductively defined:
 - $\mathcal{M}(e,n) = \mathcal{M}(e,e(n))$
 - ...(as before)
 - Using $\mathcal{M}(e,sp)$ and $\mathcal{S}(e,sp)$ rather than $\mathcal{M}(sp)$ and $\mathcal{S}(sp)$.

Specifications can be named.

Concrete Syntax

11/39

- Environment: defined by a declaration (sequence).
 - ϵ : the empty declaration sequence.
 - Denoting the environment that does not contain any mapping.
 - n is sp: a sequence with a single declaration.
 - Denoting the environment that only maps n to sp.
 - d; n is sp: declaration sequence d followed by a declaration.
 - Denoting the environment that maps n to sp and every other name to the same specification as the environment denoted by d does.
- Specification: d; sp
 - \blacksquare Declaration (sequence) d denoting an environment e.
 - $sp \in SL(e)$.
 - Special case: ϵ ; sp is simply written as sp.

Specifications are defined in the context of declarations.

Example


```
BOOL is
  loose spec
     sorts freely generated bool
     opns constr True :\rightarrow bool, False :\rightarrow bool
  endspec:
NAT is
  loose spec
     sorts nat
     opns 0 :\rightarrow nat, Succ : nat \rightarrow nat
  endspec:
BOOLNAT is BOOL + NAT
  freely generated
     in sorts nat
     by opns 0 :\rightarrow nat, Succ : nat \rightarrow nat;
extend BOOLNAT by opns \_ \le \_ : nat \times nat \rightarrow bool
model vars m.n: nat
  axioms
     0 < n = True
     Succ(m) < 0 = False
     Succ(m) < Succ(n) = m < n
```

A structured specification of the "classical" algebra.

1. A Specification Language

2. Modularization

3. Parameterization

4. Further Topics

Module Signatures

A module is an entity with a well-defined interface to its environment.

- Module signature: pair (Σ_i, Σ_e) .
 - Import signature Σ_i .
 - \blacksquare A sort/operation from Σ_i is called imported.
 - **Export** signature Σ_e
 - \blacksquare A sort/operation from Σ_e is called exported.
 - A sort/operation from $\Sigma_i \cap \Sigma_e$ is called inherited.
- **Example:** $\Sigma_i = (\{r, s\}, \{\omega_1, \omega_2\}), \Sigma_e = (\{s\}, \{\omega_1, \omega_3\}).$

Modularized Abstract Datatypes

Take module signature (Σ_i, Σ_e) .

- A (Σ_i, Σ_e) -module (also called a "modularized abstract datatype") $M: Alg(\Sigma_i) \to \mathbb{P}(Alg(\Sigma_e))$
 - \blacksquare is a mapping from $\Sigma_{\it i}\mbox{-algebras}$ to classes of $\Sigma_{\it e}\mbox{-algebras}$ such that
 - for every $A \in Alg(\Sigma_i)$, $M(A) \subseteq Alg(\Sigma_e)$ is an abstract datatype.
- A (Σ_i, Σ_e) -module M is persistent for an algebra $A \in Alg(\Sigma_i)$, if $\forall B \in M(A) : (A|\Sigma_i \cap \Sigma_e) \simeq (B|\Sigma_i \cap \Sigma_e)$.
 - Inherited sorts/operations have the same meaning in A and in M(A).
- A (Σ_i, Σ_e) -module M is consistent for an algebra $A \in Alg(\Sigma_i)$, if $M(A) \neq \emptyset$.
 - \blacksquare The mapping M is "effective".
- A (Σ_i, Σ_e) -module M is monomorphic for an algebra $A \in Alg(\Sigma_i)$, if M(A) is monomorphic.
- M is persistent/consistent/monomorphic, if
 - it is consistent/persistent/monomorphic for every $A \in Alg(\Sigma_i)$.

Loose Module Specifications

Take logic L.

- Abstract syntax: a loose module specification is a pair $sp = ((\Sigma_i, \Sigma_e), \Phi)$ consisting of
 - \blacksquare a module signature (Σ_i, Σ_e) with $\Sigma_i \subset \Sigma_e$, and
 - \blacksquare a set of formulas $\Phi \subseteq L(\Sigma_e)$.
 - Entities of Σ_i are specified "elsewhere".
- Semantics: the meaning of a loose module specification $sp = ((\Sigma_i, \Sigma_e), \Phi)$ is the (Σ_i, Σ_e) -module defined as $\mathcal{M}(sp)(A) = \{B \in Alg(\Sigma_e) \mid B \models \Phi \land B | \Sigma_i \simeq A\}$ for every $A \in Alg(\Sigma_i)$.

A loose module specification defines a persistent (but not necessarily consistent) module.

Concrete Syntax


```
\Sigma_i = (\{bool, el\}, \{True, False\}), \Sigma_e = \Sigma_i \cup (\{list\}, \{[], Add, .\}).
       loose mspec
             sorts import bool, import el, list
             opns
                   import True :\rightarrow bool
                   import False \rightarrow bool
                   [\ ]: \rightarrow \mathit{list}
                   Add: el \times list \rightarrow list
                   list \times list \rightarrow list
             vars I, m: list, e: el
             axioms
                   [ ].I = I
                   Add(e, I).m = Add(e, I.m)
      endspec
```

A Module Specification Language

- **Abstract syntax**: set MSL of specs sp with signatures S(sp):
 - If sp is a loose module specification, then $sp \in MSL$

with S(sp) as previously defined;

- If $sp_1, sp_2 \in \mathit{MSL}$ with $\mathcal{S}(sp_1) = (\Sigma_{1i}, \Sigma_{1e})$ and $\mathcal{S}(sp_2) = (\Sigma_{2i}, \Sigma_{2e})$
 - lacksquare and each sort and operation of $\Sigma_{1e} \cap \Sigma_{2i}$ is inherited in $\mathcal{S}(sp_1)$,
 - lacksquare and each sort and operation of $\Sigma_{2e}\cap\Sigma_{1i}$ is inherited in $\mathcal{S}(\mathit{sp}_2)$,

(no sort/operation introduced by one specification is imported by the other one)

then

$$(sp_1+sp_2)\in \mathit{MSL}$$
 with $\mathcal{S}(sp_1+sp_2)=(\Sigma_{1i}\cup\Sigma_{2i},\Sigma_{1e}\cup\Sigma_{2e});$

A Module Specification Language (Contd)

- Abstract syntax: set MSL of specs sp with signatures S(sp):
 - **.** . . .
 - If $sp_1, sp_2 \in MSL$ with $\mathcal{S}(sp_1) = (\Sigma_i, \Sigma)$ and $\mathcal{S}(sp_2) = (\Sigma, \Sigma_e)$, then $(sp_2 \circ sp_1) \in MSL$ Σ_e

with $\mathcal{S}(\mathit{sp}_2 \circ \mathit{sp}_1) = (\Sigma_i, \Sigma_e)$

- If $sp \in MSL$ with $S(sp) = (\Sigma_i, \Sigma_e)$ and $\mu : \Sigma_e \to \Sigma'$ is a renaming with $\mu(a) \notin \Sigma_i$ for each sort/operation a with $\mu(a) \neq a$, then (rename sp by μ) $\in MSL$
 - with $\mathcal{S}(\text{rename } sp \text{ by } \mu) = (\Sigma_i, \mu(\Sigma_e));$ (no clash between imported sorts/operations and "new" exported sorts/operations)
- The constructs forget, extend, model, and (freely) generated are defined similarly as before.

Sp₂ sp_1

19/39

The language *SL* can be considered as a sublanguage of *MSL* where all module specifications have empty import signatures.

Semantics

- **Semantics**: $\mathcal{M}(sp)$ is inductively defined:
 - $\mathcal{M}(sp)$ of a loose module specification sp is as previously defined;
 - If $S(sp_1) = (\Sigma_{1i}, \Sigma_{1e})$ and $S(sp_2) = (\Sigma_{2i}, \Sigma_{2e})$, then

$$\mathcal{M}(sp_1 + sp_2)(A) = \{B \in Alg(\Sigma_{1e} \cup \Sigma_{2e}) \mid (B|\Sigma_{1e}) \in \mathcal{M}(sp_1)(A|\Sigma_{1i}) \land (B|\Sigma_{2e}) \in \mathcal{M}(sp_2)(A|\Sigma_{2i})\};$$

- If $S(sp_1) = (\Sigma_i, \Sigma)$ and $S(sp_2) = (\Sigma, \Sigma_e)$, then
 - $\mathcal{M}(sp_2 \circ sp_1)(A) = \bigcup_{B \in \mathcal{M}(sp_1)(A)} \mathcal{M}(sp_2)(B);$
- If $S(sp) = (\Sigma_i, \Sigma_e)$, then $\mathcal{M}(\text{rename } sp \text{ by } \mu)(A) =$
- $\{B \in Alg(\mu(\Sigma_e)) \mid (B|\mu) \in \mathcal{M}(sp)(A)\};$ The semantics of the constructs forget, extend, model, and (freely)
- **generated** is defined similarly as before.

Generalization of the semantics of a specification from an ADT to a function that takes an algebra and returns an ADT.

Example

21/39

As shown in previous section, also module specifications may be named.

```
BOOL is

loose mspec
sorts freely generated bool
opns constr True :→ bool, False :→ bool
endmspec;

EL is loose mspec sorts el endmspec;

LIST is ...; (see last example)

LIST ○ (BOOL + EL)
```

Since the import signature of this specification is empty, it may be considered as a specification with signature $(\{bool, el, list\}, \{True, False, \lceil \rceil, Add\}).$

Properties

22/39

Take specification $sp \in MSP$ with $S(sp) = (\Sigma_i, \Sigma_e)$.

- $\mathcal{M}(sp)$ maps Σ_{i} -algebras to classes of Σ_{e} -algebras.
- -M(sp)(A) is an abstract datatype, for each Σ_i -algebra A.
- Each construct of the module specification language preserves persistency.
 - Thus any module specification is persistent, provided that the atomic specifications in it are.
- Each construct of the module specification language except model, generated, and freely generated preserves consistency.
 - Thus any module specification that does not use these constructs is consistent, provided that the atomic specifications in it are.

The semantics of the module specification language is "as expected".

Import Signatures Revisited

What is actually the purpose of a specification's import signature?

- Consider $LIST \circ (BOOL + ...)$
 - LIST uses an imported sort bool.
 - **BOOL** provides a specification of this sort.
 - Purpose: we want to reuse bool in different contexts.
 - Only a single specification BOOL suffices; its can then be used by import in multiple other specifications.
- Consider $LIST \circ (... + EL)$
 - LIST uses an imported sort el.
 - But we actually do not expect a specification for el!
 - Rather el saves as a "placeholder" for some other sort.
 - Purpose: we want to instantiate el by different sorts.
 - Only a single specification LIST suffices; its sort el can then be instantiated by multiple concrete sorts.
 - Two additional mechanisms are needed:
 - A mapping of the specified sorts to the actual sorts.
 - A mean to express semantic constraints on the imported sorts.

1. A Specification Language

2. Modularization

3. Parameterization

4. Further Topics

Parameterized Specifications

We extend module specifications to parameterized specifications.

- Abstract Syntax: set PSL of specifications sp with signatures S(sp).
 - If $sp \in PSL$ with $S(sp) = (\Sigma_i, \Sigma_e)$ and if $\mu : \Sigma_i \cup \Sigma_e \to \Sigma'$ is a signature morphism that "renames the import signature", i.e.
 - $\mu(s) = s$ for each sort $s \in \Sigma_e \backslash \Sigma_i$,
 - $\mu(\omega)$ and ω have the same operation name for each op. $\omega \in \Sigma_e \backslash \Sigma_i$, and that avoids "name clashes" with introduced sorts, i.e.
 - $\mu(a) = \mu(b)$ implies a and b are inherited, for all $a, b \in \Sigma_e, a \neq b$,
 - $\mu(a) = \mu(b)$ implies b is inherited for each a from Σ_i and b from Σ_e , then

(import rename
$$psp$$
 by μ) $\in PSP$
with S (import rename psp by μ) = $(\mu(\Sigma_i), \mu(\sigma_o))$;

- If $sp \in PSP$ with $S(sp) = (\Sigma_i, \Sigma_e)$ and $\Phi \subseteq L(\Sigma_i)$ for logic L, then $(sp \text{ import model } \Phi) \in PSP$
 - with $S(sp \text{ import model } \Phi) = S(sp)$;
- ...(as before using PSL rather than MSL).

Example

Take
$$\Sigma_i = (\{a, b\}, \emptyset), \Sigma_e(\{a, c\}, \emptyset).$$

- lacksquare A signature morphism μ suitable for **import rename** must *not* allow
 - $\mu(c) = d,$
 - First condition is violated.
 - μ renames an entity introduced by the specification.
 - $\mu(a) = \mu(c),$
 - Third condition is violated.
 - μ maps exported sort a to the same name as the introduced sort c.
 - $\mu(b) = \mu(c).$
 - Fourth condition is violated.
 - ullet μ maps imported sort b to the same name as the introduced sort c.

The signature morphism is intended to map actual "argument" sorts to formal "parameter" sorts.

Semantics

- **Semantics**: $\mathcal{M}(sp)$ is inductively defined:
 - If $\mathcal{S}(sp) = (\Sigma_i, \Sigma_e)$, then for each $A \in Alg(\mu(\Sigma_i))$

$$\mathcal{M}(\text{import rename } sp \text{ by } \mu)(A) = \{B \in Alg(\mu(\Sigma_e)) \mid (B|(\mu_{|\Sigma_e})) \in \mathcal{M}(sp)(A|(\mu_{|\Sigma_i}))\};$$

- Let $f:A\to B$ and $C\subseteq A$. The restriction $f_{\mid C}$ is the function $f_{\mid C}:C\to B$ $f_{\mid C}(c)=f(c)$
- If $\mathcal{S}(sp) = (\Sigma_i, \Sigma_e)$, then for each $A \in Alg(\mu(\Sigma_i))$ $\mathcal{M}(sp \text{ import model } \Phi)(A) = \begin{cases} \mathcal{M}(sp)(A) & \text{if } A \models \Phi \\ \emptyset & \text{otherwise} \end{cases}$;
- (as with module specifications).

Properties

Take specification $sp \in PSL$ with $S(sp) = (\Sigma_i, \Sigma_e)$.

- $\mathcal{M}(sp)$ maps Σ_i -algebras to classes of Σ_e -algebras.
- -M(sp)(A) is an abstract datatype, for each Σ_i -algebra A.
- import rename and import model preserve persistency.
- Only **import rename** preserves consistency.

The semantics of the parameterized specification language is "as expected".

Example

Parameterized specification

```
loose pspec
           sorts import el_1, import el_2, freely generated pair
           opns
              constr [\_, \_] : el_1 \times el_2 \rightarrow pair
               First: pair \rightarrow el_1
               Second: pair \rightarrow el_2
           vars e_1 : el_1, e_2 : el_2
           axioms
               First([e_1, e_2]) = e_1
              Second([e_1, e_2]) = e_2
        endpspec
defines a (\Sigma_i, \Sigma_e)-module with
        \Sigma_i = (\{el_1, el_2\}, \emptyset),
        \Sigma_{e} = (\{el_{1}, el_{2}, pair\},
                  \{[\_, \_] : el_1 \times el_2 \rightarrow pair, First : pair \rightarrow el_1, Second : pair \rightarrow el_2\}).
```

Specification of (el_1, el_2) -pairs.

Example (Contd)

Parameterized specification

```
PAIR is loose pspec ... endpspec; import rename PAIR by sorts eI_1,\,eI_2 as sorts nat,\,nat
```

defines a (Σ_i, Σ_e) -module with

```
\begin{split} & \Sigma_i = (\{\textit{nat}\}, \emptyset), \\ & \Sigma_e = (\{\textit{nat}, \textit{pair}\}, \\ & \{[\_, \_] : \textit{nat} \times \textit{nat} \rightarrow \textit{pair}, \textit{First} : \textit{pair} \rightarrow \textit{nat}, \textit{Second} : \textit{pair} \rightarrow \textit{nat}\}). \end{split}
```

Specification of *nat*-pairs.

Example (Contd'2)

Parameterized specification

```
PAIR is loose pspec ... endpspec;
      NAT is loose pspec
         sorts freely generated nat
         opns
           constr 0 :\rightarrow nat
           constr Succ: nat \rightarrow nat
      endspec;
      (import rename PAIR by sorts el_1, el_2 as sorts nat, nat) \circ NAT
defines a module with empty import signature and export signature
      \Sigma = \{nat, pair\},\
         \{[\_, \_] : nat \times nat \rightarrow pair, First : pair \rightarrow nat, Second : pair \rightarrow nat\}\}.
```

Specification of pairs of natural numbers.

Example (Contd'3)

Better notation for parameterized specifications:

```
PAIR(sorts el_1, el_2) is loose pspec ...endpspec;

NAT is loose pspec ...endpspec;

PAIR(sorts nat, nat) \circ NAT
```

Similar to definition and application of parameterized procedures.

Example


```
OLISTS(sorts el, opns \_ \square : el \times el \rightarrow bool) is
   (loose pspec
      sorts import bool, import el, freely generated list
      opns
         import True :\rightarrow bool
         import False \rightarrow bool
         import \_ \sqsubseteq \_ : el \times el \rightarrow bool
         constr []:\rightarrow list
         constr Add: el \times list \rightarrow list
      vars e, e_1, e_2 : el, l : list
      axioms
         ordered([]) = True
         ordered(Add(e, [])) = True
         (e_1 \sqsubseteq e_2) = True \Rightarrow ordered(Add(e_1, Add(e_2, []))) = ordered(Add(e_2, []))
         (e_1 \sqsubseteq e_2) = False \Rightarrow ordered(Add(e_1, Add(e_2, [1]))) = False
   enspec)
   import model
      vars e, e₁, e₂, e₃ : el
      axioms
         (e \sqsubseteq e) = True
         (e_1 \sqsubseteq e_2) = True \land (e_2 \sqsubseteq e_3) = True \Rightarrow (e_1 \sqsubseteq e_3) = True
         (e_1 \sqsubseteq e_2) = True \land (e_2 \sqsubseteq e_1) \Rightarrow e_1 = e_2
```

Example (Contd)

34/39

```
OLISTS(sorts el, opns \_ \square : el \times el \rightarrow bool) is
NATBOOL is
  loose pspec
     sorts freely generated bool, freely generated nat
     opns
       constr True :\rightarrow bool
       constr False :→ bool
       constr 0 :\rightarrow nat
       constr Succ: nat \rightarrow nat
       \_<\_: nat \times nat \rightarrow bool
     vars m. n : nat
     axioms
        (0 < n) = True
        (Succ(m) < 0) = False
        (Succ(m) < Succ(n)) = (m < n)
  endpspec:
OLISTS(sorts nat, opns <: nat \times nat \rightarrow bool) \circ NATBOOL
```

Specification of ordered list of natural numbers; specification is adequate, because \leq satisfies the axioms imposed on \square

- 1. A Specification Language
- 2. Modularization

3. Parameterization

4. Further Topics

Open Issues

- Constructs extend and model have loose semantics.
 - Initial semantics counterparts require the notion of "free extensions".
 - Generalization of the notion of "initial algebra".
 - Algebras in free extension have common "stem" which does not "take part" in initiality.
 - Initial counterpart of **extend** is (**freely extend** sp **by** (S, Ω)).
 - Constructs only free extensions (rather than all extensions.
 - Initial counterpart of model is (sp quotient Φ).
 - Builds quotient algebras (rather than removing algebras).
- Specifications can be flattened.
 - Compound specifications can be translated to equivalent atomic ones.
- There exist alternative parameterization mechanisms.
 - We have used the renaming approach with a syntactic flavor.
 - There exists approaches with a semantic flavor.
 - Based on λ -calculus or on category theory.
 - However, all approaches are ultimately equivalent in expressive power.

CafeOBJ

CafeOBJ supports some of the described constructions.

- Named modules:
 - n is loose (initial) spec . . . endspec

```
module* (module!) n { ... }
```

lacksquare n is ... (arbitrary module expression)

```
make n (...)
```

 \blacksquare References to named modules: n

n

Union: $sp_1 + sp_2$

SP1 + SP2

Renaming: rename sp by ...

```
SP * { sort s1 -> s1' op w1 -> w1' ... }
```

Extension and Modelling: sp extend ...model ...
protecting (SP) signature { ... } axioms { ... }

CafeOBJ (Contd)

-
- Parameterized Modules
 - Parameters are whole modules (rather than sorts or operations).

```
module* SP1 { [ s1 ... ] op o1: ... } module* (module!) SP (P1::SP1, ...) { ... }
```

- Module Instantiation
 - "Views" specify bindings of actual arguments to formal parameters.

```
module! SP2 { [ s2 ... ] op o2: ... }
view V from SP1 to SP2 { sort s1 -> s2, op o1 -> o2, ... }
```

Instantiation of parameter module by a declared view

```
SP(P1 <= V1, ...)
```

Instantiation of parameter module by ad-hoc view

```
SP(P1 <= view to SP2
{ sort s1 -> s2, op o1 -> o2. ... }, ...)
```

See the CafeOBJ manual for more details

Parameterized Modules in Programming

Parameterized modules are now part of various programming languages.

ML functors

```
signature ELEM = sig ... end;
functor STACK(structure EL: ELEM) = struct ... end;

C++ templates (type checking only after instantiation)
template <class EL> class Stack { ... }

Java generic types
interface ELEM { ... }
class Stack<EL implements ELEM> { ... }

C# generic types
interface ELEM f ... }
```

class Stack<EL> where EL:ELEM { ... }

. . . .