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Performance of Parallel Programs

Speedup and Efficiency

• (Absolute) Speedup: Sn = Ts
Tp(n).

– Ts . . . time of sequential program.

– Tp(n) . . . time of parallel program with n processors.

– 0 < Sn ≤ n (always?)

– Criterium for performance of parallel program.

• (Absolute) Efficiency: En = Sn
n .

– 0 < En ≤ 1 (always?)

– Criterium for expenses of parallel program.

• Relative speedup and efficiency use Tp(1)
instead of Ts.
– Tp(1) ≥ Ts (why?)

– Relative speedup and efficiency are larger than their abso-

lute counterparts.

Observations depend on (size of) input data.
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Speedup and Efficency Diagrams
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Logarithmic Scales
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Amdahl’s Law

Sequential Program

f

1-f

sequential

fraction

fraction

parallelizable

• Speedup Sn ≤ 1
f+1−f

n

• Limit Sn ≤ 1
f

• Example f = 0.01⇒ Sn < 100!

Speedup is limited by the sequential fraction
of a program!
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Superlinear Speedup

Question: Can speedup be larger than the
number of processors?

Sn > n,En > 1?

Answer: In principle, no.

Every parallel algorithm solving a problem in time Tp with

n processors can be in principle simulated by a sequential

algorithm in Ts = nTp time on a single processor.

However, simulation may require some execu-
tion overhead.
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Speedup Anomalies

Still sometimes superlinear speedups can be
observed!

•Memory/cache effects
– More processors typically also provide more mem-

ory/cache.

– Total computation time decreases due to more page/cache

hits.

• Search anomalies
– Parallel search algorithms.

– Decomposition of search range and/or multiple search

strategies.

– One task may be “lucky” to find result early.

Both “advantages” can “in principle” be also
achieved on uniprocessors.
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Scalability

• Scalable algorithm
Large efficiency also with larger number of processors.

• Scalability analysis
Investigate performance of parallel algorithm with

– growing processor number,

– growing problem size,

– various communication costs.

• Various workload models
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Fixed Workload Model

Amdahl’s Law revisited:

• Assumption: problem size fixed.
– Sequential and parallelizable fraction.

– Total time T = Ts + Tp.

• Goal: minimize computation time.
Sn ≤ Ts+Tp

Ts+
Tp
n

≤ Ts+Tp
Ts

= 1
Ts

Ts+Tp
= 1/f .

• Applies when given problem is to be solved
as quickly as possible.
– Financial market predictions.

– Being faster yields a competitive advantage.

For not perfectly scalable algorithms, effi-
ciency eventually drops to zero!
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Fixed Time Model

Gustavson’s Law

• Assumption: available time is constant.

• Goal: solve largest problem in fixed time.
• Strategy: scale workload with processor

number.
– T = Ts + nTp

– Sn =
Ts+nTp

Ts+n
Tp
n

=
Ts+nTp
Ts+Tp

= fT+n(1−f)T
fT+(1−f)T = f + n(1− f )

• Speedup grows linearly with n!
• Applies where a “better” solution is appre-

ciated.
– Refined simulation model.

– More accurate predictions.

Efficiency remains constant.
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Fixed Memory Model

Sun & Ni

• Assumption: available memory is constant.

• Goal: solve largest problem in fixed mem-
ory.
• Strategy: scale problem size with available

memory.
– T = Ts + cnTp, c > 1

– Sn =
Ts+cnTp

Ts
+

cnTp
n =

Ts+cnTp
Ts+cTp

= f+cn(1−f)
f+c(1−f) ≈ n

• Applies when memory requirements grow
slower than computation requirements.

Efficiency is maximized.
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The Isoefficiency Concept

Komon & Rao

• Efficiency En = w(s)
w(s)+h(s,n)

– s . . . problem size,

– w(s) . . . workload,

– h(s, n) . . . communication overhead.

• As processor number n grows, communi-
cation overhead h(s, n) increases and effi-
ciency En decreases.

• For growing s, w(s) usually increases much
faster than h(s, n).

An increase of the workload w(s) may out-
weigh the increase of the overhead h(s, n) for
growing processor number n.
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The Isoefficiency Concept

•Question: For growing n, how fast must
s grow such that efficiency remains con-
stant?
– En = 1

1+
h(s,n)
w(s)

–⇒ w(s, n) should grow in proportion to h(s, n).

• Constant efficiency E

•Workload w(s) = E
1−Eh(s, n) = Ch(s, n)

• Isoefficiency function fE(n) = Ch(s, n)

If workload w(s) grows as fast as fE(n), con-
stant efficiency can be maintained.
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Scalability of Matrix Multiplication

• n processors, s× s matrix.

•Workload w(s) = O(s3).

•Overhead h(s, n) = O(n log n + s2√n)

•w(s) must asymptotically grow at least as
fast as h(s, n).
1. w(s) = Ω(h(s, n)).

2.⇒ s3 = Ω(n log n + s2√n).

3.⇒ s3 = Ω(n log n) ∧ s3 = Ω(s2√n).

4. s3 = Ω(s2√n)⇔ s = Ω(
√
n).

5. s = Ω(
√
n)⇒ s3 = Ω(n

√
n)⇒ s3 = Ω(n log n).

6.⇒ w(s) = Ω(n
√
n).

• Isoefficiency fE(n) = O(n
√
n)

•Matrix size s = O(
√
n)

Matrix size s must grow with at least
√
n!
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More Performance Parameters

• Redundancy R(n)
– Additional workload in parallel program.

– R(n) =
Wp(n)
Ws

– 1 ≤ R(n) ≤ n.

• System utilization U(n)
– Percentage of processors kept busy.

– U(n) = R(n)E(n) =
Wp(n)
nTp(n)

– 1
n ≤ E(n) ≤ U(n) ≤ 1.

– 1
n ≤ R(n) ≤ 1

E(n) ≤ n.

•Quality of Parallelism Q(n)
– Summary of overall performance.

– Q(n) = S(n)E(n)
R(n) = T 3

s
nT 2

p (n)Wp(n)

– 0 < Q(n) ≤ S(n)
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Parallel Execution Time

Three components

1. Computation Time Tcomp
Time spent performing actual computation; may de-

pend on number of tasks or processors (replicated com-

putation, memory and cache effects).

2. Communication Time Tmsg
• Time spent in sending and receiving messages

• Tmsg = ts + twL

• startup cost, cost/word, message length.

3. Idle Time Tidle
• Processor idle due to lack of computation or lack of data,

• Load balancing,

• Overlapping computation with communication.
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Execution Profiles

Determine ratio of

1. Computation time,

2. Message startup time,

3. Data transfer costs,

4. Idle time

as a function of the number of processors.

Guideline for redesign of algorithm!
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Experimental Studies

Parallel programming is an experimental dis-
cipline!

1. Design experiment
• Identify data you wish to obtain.

• Measure data for different problem sizes and/or processor

numbers;

• Be sure that you measure what you intend to measure.

2. Obtain and validate experimental data
• Repeat experiments to verify reproducability of results.

• Variation by nondeterministic algorithms, inaccurate

timers, startup costs, interference from other programs,

contention, . . .

3. Fit data to analytic models.
For instance, measure communication time and use

scaled least-square fitting to determine startup and data

transfer costs.
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