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Performance of Parallel Programs

Speedup and Efficiency

e (Absolute) Speedup: S, = TpT(Sn)'

— T ...time of sequential program.
—T,(n) ...time of parallel program with n processors.
-0 <S5, <n (always?)

— Criterium for performance of parallel program.
e (Absolute) Efficiency: E,, = %”

—0< E, <1 (always?)

— Criterium for expenses of parallel program.

o Relative speedup and efficiency use T)(1)
instead of 7%.

- Tp(l) > T (Why?)

— Relative speedup and efficiency are larger than their abso-
lute counterparts.

Observations depend on (size of ) input data.
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Speedup and Efficency Diagrams
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Logarithmic Scales
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Performance of Parallel Programs

Amdahl’s Law

Sequential Program

f sequential
fraction

parallelizable

1-f :
fraction

o Speedup Sn < fﬁll;r

o Limit S,, < 515
e Example f = 0.01 = 5, < 100!

Speedup is limited by the sequential fraction
of a program!
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Superlinear Speedup

Question: Can speedup be larger than the
number of processors?

S, >n,E, > 17

Answer: In principle, no.

Every parallel algorithm solving a problem in time 7}, with
n processors can be in principle simulated by a sequential
algorithm in Ty = n’T}, time on a single processor.

However, simulation may require some execu-
tion overhead.
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Speedup Anomalies

Still sometimes superlinear speedups can be
observed!

e Memory/cache effects

— More processors typically also provide more mem-
ory/cache.

— Total computation time decreases due to more page/cache
hits.

e Search anomalies

— Parallel search algorithms.

— Decomposition of search range and/or multiple search
strategies.

— One task may be “lucky” to find result early.

Both “advantages” can “in principle” be also
achieved on uniprocessors.
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Scalability

e Scalable algorithm

Large efficiency also with larger number of processors.

e Scalability analysis

Investigate performance of parallel algorithm with

— growing processor number,
— growing problem size,

— various communication costs.

e Various workload models
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Fixed Workload Model

Amdahl’s Law revisited:
e Assumption: problem size fixed.

— Sequential and parallelizable fraction.
— Total time T =T +T),.

e Goal: minimize computation time.

st Ts+1Tp

e Applies when given problem is to be solved
as quickly as possible.

— Financial market predictions.

— Being faster yields a competitive advantage.

For not perfectly scalable algorithms, effi-
ciency eventually drops to zero!
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Fixed Time Model

Gustavson’s Law

e Assumption: available time is constant.

e Goal: solve largest problem in fixed time.

e Strategy: scale workload with processor
number.

—T=1T,+n1,

o _ Te+nT, _ Te+nT, _ fT+n(1—f)T _ B
Su= ol = T, = prra—pr — L A=)

e Speedup grows linearly with n/!

e Applies where a “better” solution is appre-
ciated.

— Refined simulation model.

— More accurate predictions.

Efficiency remains constant.
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Fixed Memory Model
Sun & Ni

e Assumption: available memory is constant.

e Goal: solve largest problem in fixed mem-
ory.

e Strategy: scale problem size with available
memory.

—T=Ts+cndyc>1

_§ — Ts+cnT)y + enTy  TstenTy — f+en(1—f)

~n

e Applies when memory requirements grow
slower than computation requirements.

Efficiency is maximized.
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The Isoefficiency Concept

Komon & Rao

e Efficiency F), = w<s>w+<22

S,1)
— S ...problem size,
—w(s) ...workload,

— h(s,n) ...communication overhead.

e As processor number n grows, communi-
cation overhead h(s,n) increases and effi-

ciency E,, decreases.

e For growing s, w(s) usually increases much

faster than h(s,n).

An increase of the workload w(s) may out-

weigh the increase of the overhead h(s,n) for

growing processor number n.
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The Isoefficiency Concept

e Question: For growing n, how fast must
s grow such that efficiency remains con-
stant?

_ 1
— = w(s,n) should grow in proportion to h(s,n).

e Constant efficiency £
e Workload w(s) = 1£7Eh(3, n) = Ch(s,n)
e Isoefficiency function fr(n) = Ch(s,n)

If workload w(s) grows as fast as f(n), con-
stant efficiency can be maintained.
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Scalability of Matrix Multiplication

® 7, processors, s X S matrix.
e Workload w(s) = O(s?).
e Overhead h(s,n) = O(nlogn + s°\/n)
e w(s) must asymptotically grow at least as
fast as h(s,n).
cw(s) = Q(h(s,n)).
.= s* = Q(nlogn + s°y/n).
.= 52 =Q(nlogn) A s* = Q(s*/n).

1

2

3

4. 83 =Q(s*\/n) & s =Q(/n).

5.5 =Q(/n) = 53 =Qnyn) = s° = Q(nlogn).
6

.= w(s) = Qny/n).
e Isoefficiency fr(n) = O(ny/n)
e Matrix size s = O(y/n)

Matrix size s must grow with at least \/n!
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More Performance Parameters

e Redundancy R(n)

— Additional workload in parallel program.

— R(n) = Wlﬁf(j)
— 1< R(n) <n.

e System utilization U (n)

— Percentage of processors kept busy.

~U(n) = R(n)E(n) = ;22

~L<Em)<Un) <L

— 5 S R(n) < 555 <

e Quality of Parallelism Q(n)

— Summary of overall performance.

B _ SmE(m) _ T3
Qn) = "Fe™ = wmeiw,m

—0<Q(n) < S(n)
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Parallel Execution Time

Three components

1. Computation Time Tcomp

Time spent performing actual computation; may de-
pend on number of tasks or processors (replicated com-
putation, memory and cache effects).

2. Communication Time Timsg

e Time spent in sending and receiving messages
® Tmsg = ts + twL

e startup cost, cost/word, message length.

3. ldle Time Tidle

e Processor idle due to lack of computation or lack of data,

e Load balancing,

e Overlapping computation with communication.
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Execution Profiles

Determine ratio of

1. Computation time,

2. Message startup time,
3. Data transfer costs,
4. |dle time

as a function of the number of processors.

Guideline for redesign of algorithm!
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Experimental Studies

Parallel programming is an experimental dis-
cipline!
1. Design experiment

e Identify data you wish to obtain.

e Measure data for different problem sizes and/or processor
numbers;

e Be sure that you measure what you intend to measure.
2. Obtain and validate experimental data

e Repeat experiments to verify reproducability of results.

e Variation by nondeterministic algorithms, inaccurate
timers, startup costs, interference from other programs,
contention, . ..

3. Fit data to analytic models.

For instance, measure communication time and use
scaled least-square fitting to determine startup and data
transfer costs.
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