
Performance of Parallel Programs

Performance of Parallel Programs

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz



Performance of Parallel Programs

Speedup and Efficiency

• (Absolute) Speedup: Sn = Ts
Tp(n).

– Ts . . . time of sequential program.

– Tp(n) . . . time of parallel program with n processors.

– 0 < Sn ≤ n (always?)

– Criterium for performance of parallel program.

• (Absolute) Efficiency: En = Sn
n .

– 0 < En ≤ 1 (always?)

– Criterium for expenses of parallel program.

• Relative speedup and efficiency use Tp(1)
instead of Ts.
– Tp(1) ≥ Ts (why?)

– Relative speedup and efficiency are larger than their abso-

lute counterparts.

Observations depend on (size of) input data.

Wolfgang Schreiner 1



Performance of Parallel Programs

Speedup and Efficency Diagrams

Speedup

0

50

100

150

200

250

300

50 100 150 200 250

linear
sublinear
nonlinear

Efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250

linear
sublinear
nonlinear

Wolfgang Schreiner 2



Performance of Parallel Programs

Logarithmic Scales

Speedup

0.25

1

4

16

64

256

1 4 16 64 256

linear
sublinear
nonlinear

Efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

linear
sublinear
nonlinear

Wolfgang Schreiner 3



Performance of Parallel Programs

Amdahl’s Law

Sequential Program

f

1-f

sequential

fraction

fraction

parallelizable

• Speedup Sn ≤ 1
f+1−f

n

• Limit Sn ≤ 1
f

• Example f = 0.01⇒ Sn < 100!

Speedup is limited by the sequential fraction
of a program!

Wolfgang Schreiner 4



Performance of Parallel Programs

Superlinear Speedup

Question: Can speedup be larger than the
number of processors?

Sn > n,En > 1?

Answer: In principle, no.

Every parallel algorithm solving a problem in time Tp with

n processors can be in principle simulated by a sequential

algorithm in Ts = nTp time on a single processor.

However, simulation may require some execu-
tion overhead.

Wolfgang Schreiner 5



Performance of Parallel Programs

Speedup Anomalies

Still sometimes superlinear speedups can be
observed!

•Memory/cache effects
– More processors typically also provide more mem-

ory/cache.

– Total computation time decreases due to more page/cache

hits.

• Search anomalies
– Parallel search algorithms.

– Decomposition of search range and/or multiple search

strategies.

– One task may be “lucky” to find result early.

Both “advantages” can “in principle” be also
achieved on uniprocessors.

Wolfgang Schreiner 6



Performance of Parallel Programs

Scalability

• Scalable algorithm
Large efficiency also with larger number of processors.

• Scalability analysis
Investigate performance of parallel algorithm with

– growing processor number,

– growing problem size,

– various communication costs.

• Various workload models

Wolfgang Schreiner 7



Performance of Parallel Programs

Fixed Workload Model

Amdahl’s Law revisited:

• Assumption: problem size fixed.
– Sequential and parallelizable fraction.

– Total time T = Ts + Tp.

• Goal: minimize computation time.
Sn ≤ Ts+Tp

Ts+
Tp
n

≤ Ts+Tp
Ts

= 1
Ts

Ts+Tp
= 1/f .

• Applies when given problem is to be solved
as quickly as possible.
– Financial market predictions.

– Being faster yields a competitive advantage.

For not perfectly scalable algorithms, effi-
ciency eventually drops to zero!

Wolfgang Schreiner 8



Performance of Parallel Programs

Fixed Time Model

Gustavson’s Law

• Assumption: available time is constant.

• Goal: solve largest problem in fixed time.
• Strategy: scale workload with processor

number.
– T = Ts + nTp

– Sn =
Ts+nTp

Ts+n
Tp
n

=
Ts+nTp
Ts+Tp

= fT+n(1−f)T
fT+(1−f)T = f + n(1− f )

• Speedup grows linearly with n!
• Applies where a “better” solution is appre-

ciated.
– Refined simulation model.

– More accurate predictions.

Efficiency remains constant.

Wolfgang Schreiner 9



Performance of Parallel Programs

Fixed Memory Model

Sun & Ni

• Assumption: available memory is constant.

• Goal: solve largest problem in fixed mem-
ory.
• Strategy: scale problem size with available

memory.
– T = Ts + cnTp, c > 1

– Sn =
Ts+cnTp

Ts
+

cnTp
n =

Ts+cnTp
Ts+cTp

= f+cn(1−f)
f+c(1−f) ≈ n

• Applies when memory requirements grow
slower than computation requirements.

Efficiency is maximized.

Wolfgang Schreiner 10



Performance of Parallel Programs

The Isoefficiency Concept

Komon & Rao

• Efficiency En = w(s)
w(s)+h(s,n)

– s . . . problem size,

– w(s) . . . workload,

– h(s, n) . . . communication overhead.

• As processor number n grows, communi-
cation overhead h(s, n) increases and effi-
ciency En decreases.

• For growing s, w(s) usually increases much
faster than h(s, n).

An increase of the workload w(s) may out-
weigh the increase of the overhead h(s, n) for
growing processor number n.

Wolfgang Schreiner 11



Performance of Parallel Programs

The Isoefficiency Concept

•Question: For growing n, how fast must
s grow such that efficiency remains con-
stant?
– En = 1

1+
h(s,n)
w(s)

–⇒ w(s, n) should grow in proportion to h(s, n).

• Constant efficiency E

•Workload w(s) = E
1−Eh(s, n) = Ch(s, n)

• Isoefficiency function fE(n) = Ch(s, n)

If workload w(s) grows as fast as fE(n), con-
stant efficiency can be maintained.

Wolfgang Schreiner 12



Performance of Parallel Programs

Scalability of Matrix Multiplication

• n processors, s× s matrix.

•Workload w(s) = O(s3).

•Overhead h(s, n) = O(n log n + s2√n)

•w(s) must asymptotically grow at least as
fast as h(s, n).
1. w(s) = Ω(h(s, n)).

2.⇒ s3 = Ω(n log n + s2√n).

3.⇒ s3 = Ω(n log n) ∧ s3 = Ω(s2√n).

4. s3 = Ω(s2√n)⇔ s = Ω(
√
n).

5. s = Ω(
√
n)⇒ s3 = Ω(n

√
n)⇒ s3 = Ω(n log n).

6.⇒ w(s) = Ω(n
√
n).

• Isoefficiency fE(n) = O(n
√
n)

•Matrix size s = O(
√
n)

Matrix size s must grow with at least
√
n!

Wolfgang Schreiner 13



Performance of Parallel Programs

More Performance Parameters

• Redundancy R(n)
– Additional workload in parallel program.

– R(n) =
Wp(n)
Ws

– 1 ≤ R(n) ≤ n.

• System utilization U(n)
– Percentage of processors kept busy.

– U(n) = R(n)E(n) =
Wp(n)
nTp(n)

– 1
n ≤ E(n) ≤ U(n) ≤ 1.

– 1
n ≤ R(n) ≤ 1

E(n) ≤ n.

•Quality of Parallelism Q(n)
– Summary of overall performance.

– Q(n) = S(n)E(n)
R(n) = T 3

s
nT 2

p (n)Wp(n)

– 0 < Q(n) ≤ S(n)

Wolfgang Schreiner 14



Performance of Parallel Programs

Parallel Execution Time

Three components

1. Computation Time Tcomp
Time spent performing actual computation; may de-

pend on number of tasks or processors (replicated com-

putation, memory and cache effects).

2. Communication Time Tmsg
• Time spent in sending and receiving messages

• Tmsg = ts + twL

• startup cost, cost/word, message length.

3. Idle Time Tidle
• Processor idle due to lack of computation or lack of data,

• Load balancing,

• Overlapping computation with communication.

Wolfgang Schreiner 15



Performance of Parallel Programs

Execution Profiles

Determine ratio of

1. Computation time,

2. Message startup time,

3. Data transfer costs,

4. Idle time

as a function of the number of processors.

Guideline for redesign of algorithm!

Wolfgang Schreiner 16



Performance of Parallel Programs

Experimental Studies

Parallel programming is an experimental dis-
cipline!

1. Design experiment
• Identify data you wish to obtain.

• Measure data for different problem sizes and/or processor

numbers;

• Be sure that you measure what you intend to measure.

2. Obtain and validate experimental data
• Repeat experiments to verify reproducability of results.

• Variation by nondeterministic algorithms, inaccurate

timers, startup costs, interference from other programs,

contention, . . .

3. Fit data to analytic models.
For instance, measure communication time and use

scaled least-square fitting to determine startup and data

transfer costs.

Wolfgang Schreiner 17


