Go backward to Experimenting upon AgentsGo up to TopGo forward to Strong Equivalence |

- Strong bisimulation
- Binary relation
*S*over agents such that*(P,Q)*in*S*implies - If
*P*->^{alpha}*P'*, then*Q*->^{alpha}*Q'*with*(P',Q')*in*S*and vice versa. - For every action
`alpha`, every`alpha`-derivative of*P*is equivalent to some`alpha`-derivative of*Q*.

- Binary relation
- Example
- Claim:
*(A|B)*\*c*=*C*_{1} - True if
*S*is a strong bisimulation:*S*= { ((*A|B*)\*c*,*C*), ((_{1}*A'|B*)\*c*,*C*),_{3}

((*A|B'*)\*c*,*C*), ((_{0}*A'|B'*)\*c*,*C*) }_{2} - Check derivatives of each of the eight agents.

- Claim:

Author: Wolfgang Schreiner

Last Modification: June 8, 1998