
More on Relations 3

More on Relations 3
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University, Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

More on Relations 3

Overview

•Directed Graphs

• Paths and Reachability

• Trees

Wolfgang Schreiner 1

More on Relations 3

Directed Graphs

Wolfgang Schreiner 2

More on Relations 3

Directed Graphs

Definition: A directed graph is a pair 〈V,E〉 of a set V of vertices/
nodes and a set of E of edges/arcs where E is binary relation on V :

G is directed graph :⇔
∃V,E :
G = 〈V,E〉 ∧
E ⊆ V × V.

Interpretation: 〈x, y〉 ∈ E
• x is connected to y in G,

• x is initial node of edge,

• y is terminal node of edge.

Wolfgang Schreiner 3

More on Relations 3

Example

Graph 〈N5, E〉
E = {〈0, 1〉, 〈0, 2〉, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈3, 3〉, 〈4, 0〉, 〈4, 1〉}

The visual representation of a graph is not unique.

Wolfgang Schreiner 4

More on Relations 3

Example

Graph 〈N5, E〉
E = {〈0, 1〉, 〈0, 2〉, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈3, 3〉, 〈4, 0〉, 〈4, 1〉}

0 1 2 3 4
0 false true true false false
1 false true true false false
2 false true false false false
3 false false false true false
4 true true false false false

Matrix representation is used for computing.

Wolfgang Schreiner 5

More on Relations 3

Adjacency Matrix

Definition: Let G = 〈V,E〉 be a directed graph with |V | = n. The
adjacency matrix of G is the boolean n∗n matrix M where M(x, y) =
true if and only if 〈x, y〉 ∈ E:

adjacency(G) :=
let V = G0, E = G1 :

such M ∈ V × V → {true, false} :
(∀x ∈ V, y ∈ V : M(x, y) = true⇔ 〈x, y〉 ∈ E).

Matrix representation from graph.

Wolfgang Schreiner 6

More on Relations 3

Undirected Graph

Definition: An undirected graph is a directed graph whose edge rela-
tion is symmetric:

G is undirected graph :⇔
∃V,E :
G = 〈V,E〉,
E ⊆ V × V,
E is symmetric on V.

Special kind of directed graph.

Wolfgang Schreiner 7

More on Relations 3

Example

Graph 〈N5, E〉
E = {〈0, 1〉, 〈1, 0〉, 〈0, 2〉, 〈2, 0〉, 〈1, 1〉, 〈1, 2〉,
〈2, 1〉, 〈3, 3〉, 〈0, 4〉, 〈4, 0〉, 〈1, 4〉, 〈4, 1〉}

Draw single undirected edge instead of pair of directed edges.

Wolfgang Schreiner 8

More on Relations 3

Example

Graph 〈N5, E〉
E = {〈0, 1〉, 〈1, 0〉, 〈0, 2〉, 〈2, 0〉, 〈1, 1〉, 〈1, 2〉,
〈2, 1〉, 〈3, 3〉, 〈0, 4〉, 〈4, 0〉, 〈1, 4〉, 〈4, 1〉}

0 1 2 3 4
0 false true true false true
1 true true false true
2 false false false
3 true false
4 false

Missing matrix elements are determined by symmetry.

Wolfgang Schreiner 9

More on Relations 3

Example

Graph 〈{a, b, c}, E〉
E = {〈a, a〉, 〈a, b〉, 〈b, a〉}

a b c
a true true false
b false false
c false

Wolfgang Schreiner 10

More on Relations 3

Degree

Definition: In a directed graph, the indegree of x is the number of
edges whose terminal node is x:

indegG(x) := |{y ∈ V : 〈y, x〉 ∈ E}|
where V = G0, E = G1.

The outdegree of x is the number of edges whose initial node is x:

outdegG(x) := |{y ∈ V : 〈x, y〉 ∈ E}|
where V = G0, E = G1.

The total degree of x is the sum of its indegree and its outdegree:

degG(x) := indegG(x) + outdegG(x).

Wolfgang Schreiner 11

More on Relations 3

Example

• Indegree of node 1 is 4 and its outdegree is 2:

• Indegree and the outdegree of node c are both 0.

Wolfgang Schreiner 12

More on Relations 3

Graph Isomorphisms

Definition: Two graphs are isomorphic if there exists a bijection be-
tween the nodes of the two graphs that preserves the edge structure:

G and G′ are isomorphic :⇔
G is directed graph ∧G′ is directed graph ∧

∃f : f : V
iso(E,E′)
−→ V ′

where V = G0, E = G1, V
′ = G′0, E′ = G′1.

Different graphs may have same structure.

Wolfgang Schreiner 13

More on Relations 3

Example

The graphs

are isomorphic with isomorphism

f = {〈0, b〉, 〈1, c〉, 〈2, d〉, 〈3, a〉}.

Wolfgang Schreiner 14

More on Relations 3

Example

The graphs

are isomorphic with isomorphism

f = {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 0〉}.

Wolfgang Schreiner 15

More on Relations 3

Example

The graphs

are not isomorphic.

Wolfgang Schreiner 16

More on Relations 3

Paths and Reachability

Wolfgang Schreiner 17

More on Relations 3

Path

Definition: A path is a sequence of nodes connected by edges:

p is path in G :⇔
(∃n ∈ N>0 : p : Nn→ V ∧
∀i ∈ Nn−1 : 〈pi, pi+1〉 ∈ E) where V = G0, E = G1.

The length of a path is the number of edges it contains:

length(p) := such n ∈ N : ∃V : p : Nn+1→ V .

A path from x to y has initial node x and terminal node y

p is path from x to y :⇔
p0 = x ∧ pn = y where n = length(p).

Wolfgang Schreiner 18

More on Relations 3

Path Properties

Definition: A path is simple if it does not contain any edge twice:

p is simple :⇔
∀i ∈ Nn, j ∈ Nn : 〈pi, pi+1〉 = 〈pj, pj+1〉 ⇒ i = j

where n = length(p).

A path is elementary if it does not contain any node twice:

p is elementary :⇔
(∀i ∈ Nn, j ∈ Nn : pi = pj ⇒ i = j) where n = 1 + length(p).

A path is a cycle or circuit if it terminates in its initial node:

p is cycle :⇔ ∃x : p is path from x to x.

Wolfgang Schreiner 19

More on Relations 3

Reachability

Definition: A node y is reachable from a node x in a graph G if there
is a path in G from x to y:

y is reachable from x in G :⇔
∃p : p is path in G ∧ p is path from x to y.

• For fixed G, “is reachable” is a binary relation on V .

•E is a binary relation on V .

We are going to construct the reachability relation from E.

Wolfgang Schreiner 20

More on Relations 3

Reflexive Closure

Definition: Let R be a binary relation on S. The reflexive closure of
R on S is the smallest relation that contains R and is reflexive on S:

reflexiveS(R) :=
such R′ ⊆ S × S :
R ⊆ R′ ∧R′ is reflexive on S ∧
∀R′′ : (R ⊆ R′′ ∧R′′ is reflexive on S)⇒ R′ ⊆ R′′.

Proposition:

∀S,R : R ⊆ S × S ⇒ reflexiveS(R) = R ∪ {〈x, x〉 : x ∈ S}.

Add reflexivity to relation.

Wolfgang Schreiner 21

More on Relations 3

Transitive Closure

Definition: The transitive closure of R on S is the smallest relation
that contains R and is transitive on S:

transitiveS(R) :=
such R′ ⊆ S × S :
R ⊆ R′ ∧R′ is transitive on S ∧
∀R′′ : (R ⊆ R′′ ∧R′′ is transitive on S)⇒ R′ ⊆ R′′.

Add transitivity to relation (how?).

Wolfgang Schreiner 22

More on Relations 3

Reachability and Edge Relation

Proposition: We define the reachability relation

RG := {〈x, y〉 ∈ G0 ×G0 : y is reachable from x in G}.

Then, for any directed graph 〈V,E〉, R〈V,E〉 is the reflexive and tran-
sitive closure of E on V :

∀V,E : 〈V,E〉 is directed graph ⇒
R〈V,E〉 = reflexiveV (transitiveV (E)).

Problem reduced to computing the transitive closure of edge relation.

Wolfgang Schreiner 23

More on Relations 3

Example

Graph 〈N5, E〉 where E = {〈0, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2, 3〉, 〈3, 4〉}

reflexive
N5

(E) = E ∪ {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉}
transitive

N5
(E) =

{〈0, 1〉, 〈0, 2〉, 〈0, 3〉, 〈0, 4〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉}

Wolfgang Schreiner 24

More on Relations 3

Exponentiation of Relations

Definition:
R0
S := {〈x, x〉 : x ∈ S}

Ri+1
S := RiS ◦R.

•R0
S is the identity relation.

•R1
S is R.

•R3
S = R ◦R ◦R.

Repeated composition of relation.

Wolfgang Schreiner 25

More on Relations 3

Transitive Closure

Proposition:

∀S,R : R ⊆ S × S ⇒
transitiveS(R) =

⋃
{RiS : i ∈ N>0}

Interpretation: Transitive closure is limit of

[R,R ∪ (R ◦R), R ∪ (R ◦R) ∪ (R ◦R ◦R), . . .]

Problem: cannot compute infinite sequence!

Wolfgang Schreiner 26

More on Relations 3

Transitive Closure

Proposition: Let R be a binary relation on S where S has n elements.
Then

⋃
1≤i≤nR

i
S is the transitive closure of R:

∀S,R : R ⊆ S × S ⇒
transitiveS(R) =

⋃
1≤i≤nR

i
S

where n = |S|.

Interpretation: Transitive closure is limit of

[R,R ∪ (R ◦R), . . . , R ∪ (R ◦R) ∪ . . . ∪Rn]

Constructive method for computing transitive closure.

Wolfgang Schreiner 27

More on Relations 3

Reachability

Algorithm:

reachability(V,E) :
n = |V |
R0 = {〈x, x〉 : x ∈ V }
for(i = 0; i < n; i++)

Ri+1 = Ri ∪ (Ri ◦ E)
return Rn

Can compute reachability relation from edge relation.

Wolfgang Schreiner 28

More on Relations 3

Composition of Relations

Let R and S be binary relations on Nn for some n ∈ N.

The composition of R and S is

R ◦ S = {〈a, c〉 : a ∈ Nn ∧ c ∈ Nn ∧
(∃b : 〈a, b〉 ∈ R ∧ 〈b, c〉 ∈ S)}.

For the corresponding adjacency matrix, we thus have

∀i ∈ Nn, j ∈ Nn :
adjacency(〈Nn, R ◦ S〉)i,j = true⇔
∃k ∈ Nn : Ai,k = true ∧Bk,j = true
where A = adjacency(〈Nn, R〉), B = adjacency(〈Nn, S〉).

Wolfgang Schreiner 29

More on Relations 3

Composition of Relations

Written as a Java method, the composition of two adjacency matrices
A and B giving a result matrix C resembles matrix multiplication:

void compose(int n, boolean[][] A, boolean[][] B, boolean[][] C)

{
for (int i=0; i<n; i++)

for (int j=0; j<n; j++)

{
C[i][j] = false;

for (int k=0; k<n; k++)

C[i][j] = C[i][j] || (A[i][k] && B[k][j]);

}
}

Wolfgang Schreiner 30

More on Relations 3

Trees

Wolfgang Schreiner 31

More on Relations 3

Tree

Definition: A tree is a directed graph such that there is exactly one
node, the root, that has indegree zero, every other node has indegree
one, and every node can be reached from the root.

T is tree :⇔
T is directed graph ∧
(∃r ∈ V : indeg(r) = 0 ∧
∀x ∈ V − {r} :

indeg(x) = 1 ∧
x is reachable from r in T) where V = T0.

root(T) := (such r ∈ V : indeg(r) = 0) where V = T0.

Wolfgang Schreiner 32

More on Relations 3

Example

• The following diagrams depict trees with root r:

• The following directed graphs are not trees:

Wolfgang Schreiner 33

More on Relations 3

Example

• The term −b + 2a:

• A file system with directories

/, /bin, /etc, /usr, /usr/bin, /usr/bin/X11, /usr/etc

Wolfgang Schreiner 34

More on Relations 3

Trees and Cycles

Proposition: A tree has only cycles of length 0:

∀T : T is tree ⇒
¬(∃p : p is path in T ∧ length(p) > 0 ∧ p is cycle).

No (non-trivial) path in a tree is a cycle.

Wolfgang Schreiner 35

More on Relations 3

Parents and Children

Definition: Let T be a tree. A node y is called a child of x if there is
an edge from x to y in T :

y is child of x in T :⇔
〈x, y〉 ∈ E where E = T1.

x is then called the parent of y:

parentT (y) := such x ∈ V : 〈x, y〉 ∈ E
where V = T0, E = T1.

Every node (apart from the root) has a unique parent.

Wolfgang Schreiner 36

More on Relations 3

Other Tree Relations

Definition: A node x is a leaf, if it does not have children:

x is leaf in T :⇔ x ∈ V ∧ ¬∃y : y is child of x in T
where V = T0.

A node x is an ancestor of y if there is a path from x to y in T :

x is ancestor of y in T :⇔
∃p : p is path in T ∧ p is path from x to y.

y is then called a descendant of x:

y is descendant of x in T :⇔ x is ancestor of y in T.

Wolfgang Schreiner 37

More on Relations 3

Example

a is the parent of b and an ancestor of leaf c.

Wolfgang Schreiner 38

More on Relations 3

Levels and Heights

Definition: The level of a node x in a tree is the length of the path
from the root of the tree to x:

levelT (x) := length(p) where p =
such p : p is path in T ∧ p is path from root(T) to x.

The height of a tree is the maximum level of its nodes:

height(T) := max{levelT (x) : x ∈ V } where V = T0.

Root has level 0; level of every other node is one plus the parent level.

Wolfgang Schreiner 39

More on Relations 3

Example

a has level 1, b has level 2, c has level 3. The height of the tree is 3.

Wolfgang Schreiner 40

More on Relations 3

Binary Trees

Proposition: Let T be a tree of height h where every node has an
outdegree of at most 2. The number of tree nodes is less than 2h+1:

∀T : (T is tree ∧ ∀x ∈ V : outdeg(x) ≤ 2)⇒ |V | < 2h+1

where V = T0, h = height(T).

Proof: Let T be a such a tree. We proceed by complete induction on the height of T .

1. Assume the height is h = 0. Then |V | = 1 < 2 = 2h+1.

2. Assume the height is h > 0. Consequently the root of T has a child that is the root of a tree of

height h − 1 and possibly a second child that is the root of a tree of height less than or equal

h− 1. By the induction hypothesis, we thus have

|V | ≤ 1 + (2h − 1) + (2h − 1) = 2h+1 − 1 < 2h+1.

Wolfgang Schreiner 41

More on Relations 3

Summary

•Directed graphs
– Pair of node set and edge relation.

– Adjacency matrix.

– Degree.

• Paths and reachability
– Closure of relations.

– Reachability is closure of edge relation.

• Trees
– Root, parent, children.

– Levels and heights.

Wolfgang Schreiner 42

