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Numbers

Overview

• Number Domains
– Natural Numbers

– Integer Numbers

– Rational Numbers

– Real Numbers

– Complex Numbers

• Related Notions
– Minimum and Maximum

– Sum and Product

– Binomials

– Matrix Operations

– Polynomial Operations
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The Natural Numbers
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Natural Numbers

• The numbers of counting distinct objects.

no object, one object, two objects, . . .

• Axiomatic characterization.

1. Describe properties of natural numbers.

2. Peano axioms.

• Set-theoretic construction.

1. Numbers are defined as sets.

2. Definition satisfies Peano laws.

Two ways to introduce the natural numbers.
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Peano Arithmetic

• Theory of natural numbers.
– Object constant 0 (zero).

– Unary function constant ’ (successor).

• Axioms

1. 0 is not the successor of any natural number:

∀x : x′ 6= 0.

2. Different natural numbers have different successors:

∀x, y : x′ = y′ ⇒ x = y.

3. F holds for every number, if F holds for 0 and with every number also for its successor:

(F [x← 0] ∧ (∀x : F ⇒ F [x← x + 1]))⇒ ∀x : F.
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Illustration

The natural numbers are a single infinite chain

0→ 0′→ 0′′→ 0′′′→ . . .

1. Chain starts with 0.

2. Every application of ’ yields a new natural number.

3. Every natural number is captured by the chain.
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Construction from Sets

0 := ∅;
x′ := x ∪ {x}.

Proof of first Peano law:

We prove ∀x : x′ 6= 0. Take arbitrary x. By definition of 0 and ′, we
have to prove

x ∪ {x} 6= ∅

which is true because x ∈ (x ∪ {x}) but x 6∈ ∅.

Proof of second Peano law: see lecture notes.
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Set of Natural Numbers

Definition: N, the set of natural numbers

(omitted)

Proposition: N is the smallest set that satisfies the properties:

0 ∈ N;
∀x ∈ N : x′ ∈ N;
∀F :

(F (0) ∧ ∀x ∈ N : F (x)⇒ F (x + 1))⇒ ∀x ∈ N : F (x).

Third Peano law is a consequence of this proposition.
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Auxiliary Notions

All further definitions work for both constructions of the naturals.

• Subsets of the natural numbers:

N>0 := {x ∈ N : x > 0};
Nn := {x ∈ N : x < n}.

e.g. N3 = {0, 1, 2}.

• Predecessor function:

x− := such y : x = y′.

e.g. 3− = 2; 0− = ?.
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Natural Number Arithmetic

Constants
1 := 0′, 2 := 1′;

Addition
x + y := if y = 0 then x else (x + y−)′

Multiplication
x ∗ y := if y = 0 then 0 else x + (x ∗ y−)

Total Order
x ≤ y :⇔

if x = 0 then T

else if y = 0 then F

else x− ≤ y−

Termination function r(x, y) := y for recursive definitions.

Wolfgang Schreiner 9



Numbers

Example

3 := 2′; 4 := 3′; 5 := 4′

3 < 5 :⇔
3− < 5−⇔ 2 < 4⇔
2− < 4−⇔ 1 < 3⇔
1− < 3−⇔ 0 < 2⇔
T

Recursive unfolding of definitions.
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Natural Number Laws

For all natural numbers x and y, we have:

Addition
x + 0 = x,
x + y′ = (x + y)′;

Multiplication
x ∗ 0 = 0,
x ∗ y′ = x + (x ∗ y);

Total Order
0 ≤ x ⇔ T,
x ≤ 0 ⇔ x = 0,
x′ ≤ y′ ⇔ x ≤ y.

Wolfgang Schreiner 11



Numbers

Natural Number Laws

For all natural numbers x, y, z, we have:

x + 0 = x,
x ∗ 1 = x,
x + y = y + x,
x ∗ y = y ∗ x,

x + (y + z) = (x + y) + z,
x ∗ (y ∗ z) = (x ∗ y) ∗ z,
x ∗ (y + z) = (x ∗ y) + (x ∗ z),

x ≤ x,
(x ≤ y ∧ y ≤ x) ⇒ x = y,
(x ≤ y ∧ y ≤ z) ⇒ x ≤ z.
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Order Predicates

In every domain with a binary relation ≤:

x < y :⇔ x ≤ y ∧ x 6= y;
x > y :⇔ x 6≤ y;
x ≥ y :⇔ x 6< y.

We often write a ≤ x < b to denote x ≤ a ∧ x < b and similar for
all other combinations of the order predicates.
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Logic Evaluator

pred N(x) <=> Nat(x);

fun N0 = 0;

fun ’(x: N) = +(x, 1);

fun ^-(x: N) = such(n in nat(0, x): =(x, ’(n)), n);

fun N1 = ’(N0);

fun N2 = ’(N1);

fun +N(x: N, y: N) recursive y =

if(=(y, N0), x, ’(+N(x, ^-(y))));

fun *N(x: N, y: N) recursive y =

if(=(y, N0), N0, +N(x, *N(x, ^-(y))));

pred <=N(x: N, y: N) recursive y <=>

if(=(x, N0), true, if(=(y, N0), false, <=N(^-(x), ^-(y))));
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Difference

Definition: z is a difference of x and y if x = y + z.

x− y := such z : x = z + y.

•Difference is not defined for every x and y:

There is no z with 1 = z + 2, thus 1− 2 is undefined.

• If a difference exists, it is unique:

∀x, y, z0, z1 : (x = z0 + y ∧ x = z1 + y)⇒ z0 = z1.

• If x ≥ y, the difference of x and y is defined:

∀x, y : x ≥ y ⇒ x = (x− y) + y.
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Quotient and Remainder

Definition: quotient and remainder

x div y := such q : ∃r : r < y ∧ x = (q ∗ y) + r;
x mod y := such r : ∃q : r < y ∧ x = (q ∗ y) + r.

Examples:

• 5 div 3 = 1, 5 mod 3 = 2.

• 15 div 6 = 2, 15 mod 6 = 3.

• 1 div 3 = 0, 1 mod 3 = 1.

• 0 div 3 = 0, 1 mod 3 = 0.
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Properties of Quotient and Remainder

•Quotient and remainder are not defined for every x and y:

(x div 0) and (x mod 0) are undefined for every x.

• If quotient respectively remainder exist, they are unique.
∀x, y, q0, q1, r0 < y, r1 < y :

(x = (q0 ∗ y) + r0 ∧ x = (q1 ∗ y) + r1)⇒ (q0 = q1 ∧ r0 = r1).

• If the divisor is not null, quotient and remainder exist:

∀x, y 6= 0 : (∃q, r : r < y ∧ x = (q ∗ y) + r).

•We thus have the following relationship:

∀x, y 6= 0 : x = (x div y) ∗ y + (x mod y).
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Exponentiation

.. : N× N→ N,

xn := if n = 0
N

then 1 else x ∗ xn−.

Termination function: r(x, n) := n

Example:

53 = 5∗(52) = 5∗(5∗(51)) = 5∗(5∗(5∗(50))) = 5∗(5∗(5∗(1))) =
5 ∗ 5 ∗ 5.
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More Notions

• x divides y if x ∗ z = y for some z:

x|y :⇔ ∃z : x ∗ z = y.

• The greatest common divisor of x and y is the largest number that
divides both x and y:

gcd(x, y) := such z : z|x ∧ z|y ∧ (∀w : (w|x ∧ w|y)⇒ w ≤ z).

• The least common multiple of x and y is the smallest number that
both x and y divide:

lcm(x, y) := such z : x|z ∧ y|z ∧ (∀w : (x|w ∧ y|w)⇒ z ≤ w).
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Examples

• 1|18, 2|18, 3|18, 6|18, 9|18, 18|18.

• 1|24, 2|24, 3|24, 4|24, 6|24, 8|24, 12|24, 24|24.

• gcd(18, 24) = 6.

• gcd(16, 27) = 1.

• lcm(4, 6) = 12.

• lcm(8, 12) = 24.
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More Notions

• Two numbers are relatively prime if their gcd is 1:

x and y are relatively prime :⇔ gcd(x, y) = 1.

• A number greater than 1 is prime if its only divisors are 1 and itself:

x is prime :⇔ x > 1 ∧ (∀y : y|x⇒ (y = 1 ∨ y = x)).

• 16 and 27 are relatively prime.

• (Only) the underlined numbers are prime:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, . . .
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Logic Evaluator

pred divides(x, y) <=> exists(z in nat(N0, y): =(*N(x, z), y));

fun gcd(x, y) =

let(m = if(=(x, N0), y, x):

such(z in nat(N0, m):

and(divides(z, x), divides(z, y),

forall(w in nat(+N(z, N1), m):

or(not(divides(w, x)), not(divides(w, y))))),

z));

pred isprime(x) <=>

and(not(<=N(x, N1)),

forall(y in nat(N0, x):

implies(divides(y, x), or(=(y, N1), =(y, x)))));
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The Integer Numbers
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Motivation

• Not every pair of elements has a difference in N:
– ¬∃x : 0 = x + 1.

– x− y := such z : x = z + y.

– 0− 1 is undefined.

• Introduce a set Z of integer numbers such that

1. N can be “embedded” into Z, and

2. for all integers a and b there is an integer x with a = x + b (and consequently a − b is

defined).

Set-theoretic construction on top of N.
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Definition

Idea:

• Representation: let 〈a, b〉 denote the difference between a and b.

• Normalize: 〈a, 0
N
〉 for non-negative ints, 〈0

N
, a〉 for negative ones.

Z := Z≥0 ∪ Z<0;
Z≥0 := {〈x, 0

N
〉 : x ∈ N};

Z<0 := {〈0
N
, x〉 : x ∈ N\{0

N
}};

Constructor function:

I : N× N→ Z

I(x, y) := if x ≥
N
y then 〈x−

N
y, 0

N
〉 else 〈0

N
, y −

N
x〉;

Wolfgang Schreiner 25



Numbers

Example

• The difference of 5 and 3 is denoted by

I(5
N
, 3
N

) = 〈2
N
, 0
N
〉 = 2

Z
.

• The difference of 3 and 5 is denoted by

I(3
N
, 5
N

) = 〈0
N
, 2
N
〉 = −2

Z
.

Now it remains to define the arithmetic operations.

Wolfgang Schreiner 26



Numbers

Integer Arithmetic

Constants

0 := I(0
N
, 0
N

); 1 := I(1
N
, 0
N

); 2 := I(2
N
, 0
N

).

Basic Arithmetic
x + y := I(x0 +

N
y0, x1 +

N
y1);

x ∗ y := I((x0 ∗N y0) +
N

(x1 ∗N y1), (x0 ∗N y1) +
N

(x1 ∗N y0))
−x := 〈x1, x0〉;

x− y := x + (−y).

Total Order
x ≤ y :⇔ (x0 + y1 <N y0 + x1).
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Examples

• −2 = −〈2
N
, 0
N
〉 = 〈0

N
, 2
N
〉.

• (−2) + 1 = (−〈2
N
, 0
N
〉) + 〈1

N
, 0
N
〉 = 〈0

N
, 2
N
〉 + 〈1

N
, 0
N
〉 =

I(0
N

+ 1
N
, 2
N

+ 0
N

) = I(1
N
, 2
N

) = 〈0
N
, 1
N
〉 = −〈1

N
, 0
N
〉 = −1.

• 2 ∗ 3 = 〈2
N
, 0
N
〉 ∗ 〈3

N
, 0
N
〉 = I((2

N
∗
N

3
N

) + (0
N
∗
N

0
N

), (2
N
∗
N

0
N

) + (3
N
∗
N

0
N

)) = I(6
N
, 0
N

) = 〈6
N
, 0
N
〉 = 6.

• (−2) ∗ 3 = (−〈2
N
, 0
N
〉) ∗ 〈3

N
, 0
N
〉 = 〈0

N
, 2
N
〉 ∗ 〈3

N
, 0
N
〉 =

I((0
N
∗
N

3
N

)+(2
N
∗
N

0
N

), (0
N
∗
N

0
N

)+(2
N
∗
N

3
N

)) = I(0
N
, 6
N

) =
〈0
N
, 6
N
〉 = −〈6

N
, 0
N
〉 = −6.

Substituting and evaluating the definitions.
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More Arithmetic

|x| := if 0 ≤ x then x else − x;

sign(x) := if x = 0 then 0 else if 0 ≤ x then 1 else − 1;

x div y := such q : ∃r :
|r| < |y| ∧ x = q ∗ y + r ∧ (sign(r) = 0 ∨ sign(r) = sign(y));

x mod y := such r : ∃q :
|r| < |y| ∧ x = q ∗ y + r ∧ (sign(r) = 0 ∨ sign(r) = sign(y)).
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Integer Laws

Same laws that also hold in N.

Proposition:
∀x ∈ Z, y ∈ Z : x + y = y + x.

Proof: Take arbitrary x ∈ Z, y ∈ Z. We have

x + y = (definition of +)
I(x0 +

N
y0, x1 +

N
y1) = (commutativity of +

N
)

I(y0 +
N
x0, y1 +

N
x1) = (definition of +)

y + x.
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Difference

Proposition: For every integer x and y the difference is defined:

∀x ∈ Z, y ∈ Z : x = (x− y) + y.

Proof: Take arbitrary x ∈ Z and y ∈ Z. We have

(x− y) + y = (definition of −)
(x + (−y)) + y = (associativity of +)
x + ((−y + y)) = (∗)

x + 0 = (definition of + and 0)
x.
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Proof (Continued)

(*) We show −y + y = 0:

−y + y = (definition of −)
〈y1, y0〉 + y = (definition of +)

I(y1 +
N
y0, y0 +

N
y1) = (definition of I, computation in N)

〈0
N
, 0
N
〉 = (definition of 0)

0.
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Integer Numbers

•Difference of two numbers is always is well-defined.
•Definition on top of N.

– Z ⊆ N× N.

– N 6⊆ Z!

•We will see later how to “embed” N into Z.

•We will see later a “better” construction of Z.
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The Rational Numbers
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Motivation

• Not every pair of elements has a quotient in Z:
– ¬∃x : 2 = x ∗ 3.

– x/y := such z : x = z ∗ y.

– 2/3 is undefined.

• Introduce a set Q of rational numbers such that

1. Z can be “embedded” into Q, and

2. for all rationals a and b there is an rational x with a = x∗b (and consequently a/b is defined).

Set-theoretic construction on top of Z.
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Definition

Idea:

• Representation: let 〈a, b〉 denote the quotient between a and b.

• Normalization: a and b are relatively prime and b is positive.

Conversion functions:

Z : N→ Z≥0, Z(x) := 〈x, 0
N
〉;

N : Z→ N, N(x) := |x|0;

Set definition:

Q := {〈x, y〉 : x ∈ Z ∧ y ∈ Z>0 ∧
N(x) and N(y) are relatively prime}.
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Constructor function

∗∗ : Z× Z>0→ Q

x
y := 〈sign(x ∗

Z
y) ∗

Z
(|x| div

Z
g), |y| div

Z
g〉

where g = Z(gcd(N(x),N(y))).

Example:

• 10
Z

6
Z

= 〈1
Z
∗
Z

(10
Z

div
Z

2
Z

), 6
Z

div
Z

2〉 = 〈5
Z
, 3
Z
〉.

• −Z10
Z

6
Z

= 〈−
Z

1
Z
∗
Z

(10
Z

div
Z

2
Z

), 6
Z

div
Z

2〉 = 〈−
Z

5
Z
, 3
Z
〉.

• −Z10
Z

−
Z

6
Z

= 〈1
Z
∗
Z

(10
Z

div
Z

2
Z

), 6
Z

div
Z

2〉 = 〈5
Z
, 3
Z
〉.
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Numerator and Denominator

Let r ∈ Q and take x and y such that r = 〈x, y〉. We call x the
numerator of r and y its denominator:

numerator(r) := such x : ∃y : r ∈ Q ∧ r = 〈x, y〉;
denominator(r) := such y : ∃x : r ∈ Q ∧ r = 〈x, y〉.

Numerator and denominator are uniquely defined.
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Rational Arithmetic

Definition:

See Lecture Notes!

Satisfies same laws as integer arithmetic.
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Quotient

Proposition: For all rationals x and y 6= 0 the quotient is defined:

∀x ∈ Q, y ∈ Q\{0} : x = (x/y) ∗ y.

Proof: see lecture notes.

Proposition: Between any two rational numbers, there is another ra-
tional number:

∀x ∈ Q, y ∈ Q : x < y ⇒ ∃z ∈ Q : x < z < y.

Proof: Take x ∈ Q and y ∈ Q with x < y. Then x < (x+y)/2 < y.
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Rational Numbers

•Quotient of two numbers is always is well-defined.

• Between any two rationals, there is another rational.
•Definition on top of Z.

– Q ⊆ Z× Z.

– Z 6⊆ Q!

•We will see later how to “embed” Z into Q.

•We will see later a “better” construction of Q.
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The Real Numbers
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Motivation

• Not every element has a square root in Q:
– ¬∃x : x ∗ x = 2.

–
√
x := such z : x = z ∗ z.

–
√

2 is undefined.

• Proof: see lecture notes.

• Introduce a set R of real numbers such that

1. Q can be “embedded” into R, and

2. for every non-negative real number a there is a real number x with a = x∗x (and consequently√
a is defined).

Axiomatic characterization.
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Theory of Reals

•Object constants 0 and 1.

• Unary function constant −1.

• Binary function constants +,−, ∗.
• Binary predicate constant ≤.

• Axioms: see lecture notes.
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Existence of Real Roots

Proposition: In R every non-negative number has an n-th root:

∀a ∈ R≥0, n ∈ N>0 : ∃x ∈ R : xn = a.

Definition:
n
√
x := such y : xn = y√
x := 2

N

√
x.

Consequence:

∀a ∈ R≥0, n ∈ N>0 : ( n
√
a)n = a.

All roots of non-negative reals are well-defined.
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Real Numbers

• Roots of non-negative reals are well defined.

• Axiomatic characterization.

• There are also “constructive” definitions of R.

•We will see later how to “embed” Q into R.
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The Complex Numbers
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Motivation

• Not every element has a square root in R:
– ¬∃x : x ∗ x = −1.

–
√
x := such z : x = z ∗ z.

–
√
−1 is undefined.

• Proof: We prove ∀x ∈ R : x ∗ x 6= −1. Take arbitrary x ∈ R. If
x ≥ 0, then x ∗ x ≥ 0. If x < 0, then also x ∗ x ≥ 0.

• Introduce a set C of complex numbers such that

1. R can be “embedded” into C, and

2. for every complex number a there is a complex number x with a = x ∗ x (and consequently√
a is defined).

Set-theoretic definition on top of R.
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Definition

C := R× R.

Constructor Function:

+ i : R× R→ C

x + yi := 〈x, y〉.

Let c ∈ C and take x and y such that c = 〈x, y〉. We call x the real
part of c and y its imaginary part:

real(c) := such x : ∃y : c ∈ C ∧ c = 〈x, y〉;
imaginary(c) := such y : ∃x : c ∈ C ∧ c = 〈x, y〉.

Wolfgang Schreiner 49



Numbers

Complex Number Operations

Constants

0 := 0
R

+ 0
R

i; 1 := 1
R

+ 0
R

i; 2 := 2
R

+ 0
R

i; i := 0
R

+ 1
R

i.

Arithmetic

x + y := (x0 +
R
y0) + (x1 +

R
y1)i;

x− y := (x0 −R y0) + (x1 −R y1)i;
x ∗ y := ((x0 ∗R y0)−

R
(x1 ∗R y1)) + ((x0 ∗R y1) +

R
(x1 ∗R y0))i

x/y := (((x0 ∗R y0) +
R

(x1 ∗R y1))/
R
d)+

(((x1 ∗R y0)−
R

(x0 ∗R y1))/
R
d)i

where d = (y0 ∗R y0) +
R

(y1 ∗R y1).
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Example

• i ∗ i = (0
R

+ 1
R

i) ∗ (0
R

+ 1
R

i) = (0
R
−
R

1
R

) + (0
R

+
R

0
R

)i =
(−
R

1
R

) + 0
R

i = −(1
R

+ 0
R

i) = −1.

• 2 ∗ 3 = (2
R

+ 0
R

i) ∗ (3
R

+ 0
R

i) = (6
R
−
R

0
R

) + (0
R

+
R

0
R

)i =
6
R

+ 0
R

i = 6.

• (1
R

+ 3
R

i) ∗ (2
R

+ 4
R

i) = (2
R
−
R

12
R

) + (4
R

+
R

6
R

)i =
(−
R

10
R

) + 10
R

i.
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Fundamental Theorem of Algebra

For every a0 ∈ C, . . . , an−1 ∈ C, there exists an x ∈ C such that

a0 ∗ x0 + . . . + an−1 ∗ xn−1 = 0.

•C is complete with respect to + and ∗.
– Every equation with + and ∗ has a solution in C.

No further extension required.
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Complex Square Root
√
x :=
if x1 ≥R 0

R
then u + vi else u + (−

R
v)i

where

u =

√
(x0 +

R

√
x0

2 +
R
x1

2) /
R

2
R

v =

√
(−
R
x0 +

R

√
x0

2 +
R
x1

2) /
R

2
R
.

Proposition: the (positive or negative) root of x squared equals x.

∀x ∈ C :
let r =

√
x :

x = r ∗ r ∧ x = (−r) ∗ (−r).
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Complex Conjugate

Definition: the complex conjugate.

x := x0 + (−
R
x1)i.

Example: 3
R

+ 5
R

i = 3
R

+ (−
R

5
R

)i.

Proposition: For every x ∈ C, y ∈ C, z ∈ C, the following holds:

x = x,
x + y = x + y,
x ∗ y = x ∗ y,

y 6= 0⇒ x/y = x/y,
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Complex Numbers

•C is complete with respect to + and ∗.
– All equations have solutions in C.

•Definition on top of R.
– C = R× R.

– R 6⊆ C!

– Cartesian coordinates.

•We will see later how to “embed” R into C.

•We will see later another definition of C (polar coordinates).
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Relationship between Number Domains

Each domain has an “identical twin” in subsequent domain.

Wolfgang Schreiner 56



Numbers

Related Notions

Wolfgang Schreiner 57



Numbers

Minimum and Maximum Quantifier

Definition: If x is a variable and F is a formula, then the following
are terms with bound variable x:

minx F
maxx F

The value of the first term is the smallest value of x such that F
holds; the value of the second term is the largest such value:

minx F := such x : F ∧ (∀y : F [x← y]⇒ x ≤ y);
maxx F := such x : F ∧ (∀y : F [x← y]⇒ x ≥ y).

Quantifiers for every domain with a binary predicate ≤.
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Minimum and Maximum Function

min(S) := minx x ∈ S;
max(S) := maxx x ∈ S;

Examples:

•We have
maxx(isprime(x) ∧ x|100) = 5.

• The value of
min({1/x : x ∈ N>0})

is undefined, because for every x in {1/1, 1/2, 1/3, 1/4, . . . } there
is always an y in this set with y < x, namely 1/(x + 1).
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Sum Quantifier

Definition: If x is a variable, F is a formula and T is a term, then the
following is a term with bound variable x:∑

x,F

T.

The value of this term is 0, if F does not hold for any x; otherwise it
is, for every x that satisfies F , the sum of the value of T and of the
value of the term for all other x:

(∀x : ¬F ) ⇒
∑
x,F T = 0;

(∀y : F [x← y] ⇒
∑
x,F T = T [x← y] +

∑
x,F∧x 6=y T ).
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Examples ∑
1≤i≤n

i2 =
∑

i,(i∈N∧1≤i∧i≤n)

i2

∑
1≤i≤0

i2 = 0

∑
1≤i≤5

i2 = 12 +
∑

2≤i≤5

i2

∑
1≤i≤5

i2 = 12 + 22 + 32 + 42 + 52;
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Examples ∑
1≤i≤9

(x− i)2 = (x− 1)2 +
∑

2≤i≤9

(x− i)2

∑
1≤i≤n

xi =
∑

1≤i≤n∧iseven(i)

xi +
∑

1≤i≤n∧isodd(i)

xi

Identities which are true for every x.
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Example: Decimal Number Representation

Let a := [3, 1, 2, 9, 0, 7]. We have∑
0≤i≤5

ai ∗ 10i = 709213.

In general, for any finite sequence d of “decimal digits” the term∑
0≤i<length(d)

di ∗ 10i

denotes the value of this sequence in the decimal number system.
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Example: Binary Number Representation

Likewise, for any finite sequence b of binary digits 0 and 1, the value∑
0≤i<length(b)

bi ∗ 2i

denotes the value of this sequence in the binary number system, e.g.,
the value of [0, 1, 1, 0, 1] is

1 ∗ 24 + 0 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 22.

Generalization to any number base.
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Multiple Variable Bindings∑
1≤i≤5,1≤j≤3

i ∗ j = 1 ∗ 1 + 1 ∗ 2 + 1 ∗ 3 +
∑

2≤i≤5,1≤j≤3

i ∗ j

∑
1≤i≤3,1≤j≤i

i ∗ j = 1 ∗ 1 + 2 ∗ 1 + 2 ∗ 2 + 3 ∗ 1 + 3 ∗ 2 + 3 ∗ 3.

Bound variables have to be deduced from context.
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Sum Identities

For all vars i and j and formulas F (in which j does not occur freely),
G (in which i does not occur freely), and H and terms T and U :∑

i,F

T ∗
∑
j,G

U =
∑
i,F

∑
j,G

T ∗ U.

∑
i,F

∑
j,G

T =
∑
j,G

∑
i,F

T =
∑

i,j,F∧G
T.

∑
i,F

T +
∑
i,H

T =
∑
i,F∨H

T +
∑
i,F∧H

T.
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Sum Identities

Furthermore, if term C is a term in which i does not occur freely:∑
i,F

C ∗ T = C ∗
∑
i,F

T.

∑
i,F

C = n ∗ C

(where n is the number of i for which F holds).

Wolfgang Schreiner 67



Numbers

Examples∑
1≤i≤n

xi ∗
∑

1≤j≤m
xj =

∑
1≤i≤n

∑
1≤j≤m

xi+j =
∑

1≤i≤n∧1≤j≤m
xi+j.

∑
1≤i≤n

∑
1≤j≤m

i ∗ xj =
∑

1≤i≤n
(i ∗

∑
1≤j≤m

xj).

Many more identities can be deduced from basic definition.
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Product Quantifier

If x is a variable, F is a formula and T is a term, then the following
is a term with bound variable x:∏

x,F

T.

The value of this term is 1, if F does not hold for any x; otherwise it
is, for every x that satisfies F , the product of the value of T and of
the value of the term for all other x:

(∀x : ¬F ) ⇒
∏
x,F T = 1;

(∀y : F [x← y] ⇒
∏
x,F T = T [x← y] ∗

∏
x,F∧x 6=y T ).
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Example ∏
1≤i≤n

i2 =
∏

i,(i∈N∧1≤i∧i≤n)

i2

∏
1≤i≤0

i2 = 1

∏
1≤i≤5

i2 = 12 ∗
∏

2≤i≤5

i2

∏
1≤i≤5

i2 = 12 ∗ 22 ∗ 32 ∗ 42 ∗ 52;
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Product Identities

See lecture notes.
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Factorial

Definition: The factorial of a natural number n is the product of all
non-zero numbers less than or equal n:

n! :=
∏

1≤i≤n
i.

Handy notation for a particular product.
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Binomial

Definition: The binomial coefficient (Binomialkoeffizient) “n choose
k” of two natural numbers n and k:(

n
k

)
:= if 0 ≤ k ≤ n then

n!

k! ∗ (n− k)!
else 0.

Proposition: We have for every n and k with 0 ≤ k ≤ n(
n
k

)
=

∏
n−k+1≤i≤n i∏

1≤i≤k i
.

Important notion in combinatorics (the math of “counting things”).
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Motivation(
n
k

)
is the number of ways

• to choose a k element set

• from an n-element set.

Example:

The set {0, 1, 2, 3} has 6 =

(
4
2

)
subsets with 2 elements:

{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}.
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Binomial Identities

For every n ∈ N and k ∈ N with 0 ≤ k ≤ n:(
n + 1
k + 1

)
=

(
n
k

)
+

(
n

k + 1

)
,

(
n
k

)
=

(
n

n− k

)
,

(
n
0

)
=

(
n
n

)
= 1.

Wolfgang Schreiner 75



Numbers

Pascal’s Triangle

1

1 1

1 2 1

1 3 3 1

. . . . . . . . . . . . . . . . . . . . . . . .

=

(
0
0

)
(

1
0

) (
1
1

)
(

2
0

) (
2
1

) (
2
2

)
(

3
0

) (
3
1

) (
3
2

) (
3
3

)
. . . . . . . . . . . . . . . . . . . . . . . .
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Construction

This triangle is bounded by sides of 1 and where every interior element
is the sum of both parents:(

n
k

) (
n

k + 1

)
. . . . . .

(
n + 1
k + 1

)
. . . . . . .

Quick construction of binomial values.
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Matrix Operations

See lecture notes.
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Polynomials

A polynomial over the reals is an infinite sequence of real numbers,
the coefficients, of which only finitely many are different from 0:

p is polynomial :⇔ p : N→ R ∧ (∃k ∈ N : ∀i ≥ k : pi = 0).

The degree of a polynomial is zero, if all coefficients are zero; other-
wise, it is the index of the largest non-zero coeffient:

deg(p) :=
if ∀i ∈ N : pi = 0

then 0
else (such k ∈ N : pk 6= 0 ∧ (∀i > k : pi = 0)).
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Special Polynomials

Poly := {p ∈ N→ R : p is polynomial}.

Definition: constant and variable polynomial

.Poly : R → Poly
cPoly := such p ∈ Poly : p0 = c ∧ (∀i > 0 : pi = 0)

x := such p ∈ Poly : p0 = 0 ∧ p1 = 1 ∧ (∀i > 1 : pi = 0)

3Poly = [3, 0, 0, 0, 0, . . .]
x = [0, 1, 0, 0, 0, . . .]
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Polynomial Operations

+ : Poly × Poly→ Poly
(p + q)i := pi + qi

− : Poly × Poly→ Poly
(p− q)i := pi − qi

− : Poly→ Poly
(−p)i := −(pi)

∗ : Poly × Poly→ Poly
(p ∗ q)i :=

∑
0≤j≤i pj ∗ qi−j
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Examples

3Poly = [3, 0, 0, 0, 0, . . .]
x = [0, 1, 0, 0, 0, . . .]

x + 3 = [3, 1, 0, 0, 0, . . .]
x ∗ x = [0, 0, 1, 0, 0, . . .]

x ∗ x + 2 ∗ x + 1 = [1, 2, 1, 0, 0, . . .]
(x + 1) ∗ (x + 2) = [2, 3, 1, 0, 0, . . .]

Terms are just convenient notations to describe polynomials and com-
pute with them.
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Relationship to Reals

For all real numbers a and b we have

aPoly + bPoly = (a +
R
b)Poly,

aPoly − bPoly = (a−
R
b)Poly,

−aPoly = (−
R
a)Poly,

aPoly ∗ bPoly = (a ∗
R
b)Poly.

A property like 1 + 1 = 2 also holds for polynomials 1Poly and 2Poly
and + interpreted as the polynomial addition.
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Polynomial Evaluation

Definition: polynomial evaluation

[ ] : Poly × R → R

p[a] :=
∑

0≤i≤deg(p) pi ∗R ai.

Example: p := 2 + 3 ∗ x + 4 ∗ x ∗ x:

p = [2, 3, 4, 0, 0, 0, 0, . . .]

p[5] = 2 ∗ 50 + 3 ∗ 51 + 4 ∗ 52 = 117.
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Polynomial Evaluation

Proposition: For all polynomials p and q and all reals c and a:

cPoly[a] = c,
x[a] = a,

(p + q)[a] = p[a] +
R
q[a],

(p ∗ q)[a] = p[a] ∗
R
q[a].

When evaluating a polynomial p on a real a, we substitute aPoly for
every occurrence of x in p and then use arithmetic on reals.

(x + 1)[2] = 2 + 1 = 3
(x ∗ x + 2 ∗ x + 1)[3] = 3 ∗ 3 + 2 ∗ 3 + 1 = 16
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Typical Notation

• No fixed “polynomial variable” x.

• Polynomial domains R[x], Q[y], C[z].
– Coefficient domain R, Q, C.

– Polynomial variable x, y, z.

– Q[y]: y = [0, 1, 0, 0, 0, . . .].

•Multivariate polynomials R[x, y]
– R[x, y] = (R[x])[y].

– Coefficients are themselves polynomials.

Generalization to arbitrary number of variables.
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Summary

• Number domains.
– Construction.

– Basic operations.

– Basic laws.

– Relationship.

•Minimum and Maximum.

• Sum and Product.

• Binomials.

•Matrix operations.

• Polynomials.
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