previous up next
Go backward to Illustration
Go up to Top
Go forward to Illustration
RISC-Linz logo

Convergence and Limit

Definition: An infinite sequence s over R converges to limit a, if its members approach a arbitrarily close:

s converges to a : <=>
   forall epsilon > 0: exists n in N: forall i >= n: |si - a| < epsilon ;
lim(s) :=
   such a: s converges to a.

A non-convergent series is called  divergent (divergent):

s is divergent : <=> ~exists a: s converges to a.

Author: Wolfgang Schreiner
Last Modification: December 14, 1999

previous up next