to be prepared for 25.01.2024

Exercise 49. Let W be a set, ordered linearly by some relation $<$ and let $P_{\text {fin }}(W)$ denote the set of finite subsets of W. For $A, B \in P_{\text {fin }}(W)$ define

$$
\begin{equation*}
A<B \Longleftrightarrow \max (A \Delta B) \in B \tag{1}
\end{equation*}
$$

where $A \Delta B=(A \backslash B) \cup(B \backslash A)$ is the symmetric difference.
Show that:

1. (1) is a linear order on $P_{\text {fin }}(W)$ that extends both, the partial order of containment $(A \subset B)$ and, via embedding $w \mapsto\{w\}$, the linear order $<$.
2. If $<$ is a well-order on W then (1) is a well-order on $P_{\text {fin }}(W)$.

In the presence of a monomial order we use this concept to compare the sets of monomials of two polynomials.

Exercise 50. Write $[X]$ for the set of all monomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and let $\mathrm{M}(f)$ denote the set of monomials that occur in a polynomial f with a nonzero coefficient. Moreover, given polynomials $f, g, h \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we set

$$
\begin{equation*}
f \longrightarrow_{g} h \Longleftrightarrow \exists_{c \in \mathbb{F}} \exists_{\mu \in[X]} h=f-c \mu g \text { and } \mathrm{M}(h)<\mathrm{M}(f) . \tag{2}
\end{equation*}
$$

Consider a Gröbner basis for $I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and let $g, h \in G$ with $g \neq h$. Prove the following statements.

1. If $\operatorname{lt}(g) \mid \operatorname{lt}(h)$ then $G \backslash\{h\}$ is a Gröbner basis for I.
2. If $h \longrightarrow_{g} h^{\prime}$ then $(G \backslash\{h\}) \cup\left\{h^{\prime}\right\}$ is a Gröbner basis for I.

Exercise 51. A set $G \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \backslash 0$ is called a reduced Gröbner basis (w.r.t. some monomial order) provided that

- G is a Gröbner basis;
- $\forall_{g \in G} \operatorname{lc}(g)=1$;
- $\forall_{g \in G} \mathrm{M}(g) \cap\langle\mathrm{lt}(G \backslash\{g\})\rangle=\emptyset$.

Let G be a Gröbner basis for the ideal $I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Describe an algorithm which, starting from G, produces a reduced Gröbner basis for I.

Exercise 52. Let $<$ be a monomial order and $I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Prove that I has a unique reduced Gröbner basis.
Hint: Given two reduced Gröbner bases G and G^{\prime} for I, use the definition of Gröbner basis to prove that $\operatorname{LT}(G)=\operatorname{LT}\left(G^{\prime}\right)$. Then use property (\star) in Proposition Red0: $f \in I \Longleftrightarrow f$ rem $G=0$.

Exercise 53. Let $<$ be a monomial order and $G \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ an arbitrary set. Write $f \xrightarrow{\star} h$ if there is a finite chain of reductions (2)

$$
f \longrightarrow g_{g_{1}} h_{1} \longrightarrow g_{2} h_{2} \longrightarrow g_{3} \cdots \longrightarrow_{g_{r}} h \text { where all } g_{i} \text { are in } G \text {. }
$$

A polynomial f is called irreducible (w.r.t. the given reduction defined by G) or a normal form, if there is no h s.t. $f \longrightarrow h$. Let N denote the set of all normal forms and $Z=\{f \mid f \xrightarrow{\star} 0\}$ the set of all polynomials that reduce to 0 .

Prove the following statements.

1. The reduction terminates always (each f has a normal form).
2. Let $I=\langle G\rangle$ be the ideal generated by G. Then
(a) $N+I=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$;
(b) $N \cap I=0 \Longleftrightarrow I=Z$;
(c) G is a Gröbner basis for $I \Longleftrightarrow N \oplus Z=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$.
