to be prepared for 18.01.2024

Exercise 42. Again the situation of Exercise 37 prove that the number of unlucky primes is small, i.e., the cardinality of the set of all monic irreducibles $p \in \mathbb{F}[y]$ with a fixed degree $d+1+\operatorname{deg} b$ that $\operatorname{divide}^{\operatorname{res}_{x}(f / h, g / h) \text { is at most }}$ $2 \cdot \operatorname{deg}_{x} f$.

Exercise 43. Let $<$ be a monomial order on \mathbb{N}^{n}, and $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. For $f=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} x^{\alpha} \in R \backslash 0$, the multidegree of f is the greatest n-tuple of exponents occuring in f with a nonzero coefficient

$$
\operatorname{mdeg}(f)=\max \left\{\alpha \in \mathbb{N}^{n} \mid c_{\alpha} \neq 0\right\}
$$

Prove the following statements for $f, g \in R \backslash 0$:

1. $\operatorname{mdeg}(f g)=\operatorname{mdeg}(f)+\operatorname{mdeg}(g)$;
2. If $f+g \neq 0$ then $\operatorname{mdeg}(f+g) \leq \max \{\operatorname{mdeg}(f), \operatorname{mdeg}(g)\}$;
3. If $f+g \neq 0$ and $\operatorname{mdeg}(f) \neq \operatorname{mdeg}(g)$ then $\operatorname{mdeg}(f+g)=\max \{\operatorname{mdeg}(f), \operatorname{mdeg}(g)\}$.

Exercise 44. Let $<$ be a monomial order on $\mathbb{N}^{n}, I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ an ideal and $G \subseteq I$. Show that

$$
\langle\operatorname{LT}(G)\rangle=\langle\operatorname{LT}(I)\rangle \Longleftrightarrow \forall_{p \in I} \exists_{g \in G} \operatorname{lt}(g) \mid \operatorname{lt}(p)
$$

Exercise 45. Given a monomial order $<$ on \mathbb{N}^{n}. A Gröbner basis for an ideal $I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a finite subset $G \subseteq I$ with the property $\langle\operatorname{LT}(G)\rangle=\langle\mathrm{LT}(I)\rangle$. Let G be a Gröbner basis for $I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Prove that there exists a unique $r \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that

1. $r \equiv f \bmod I$;
2. no term of r is divisible by any monomial in $\operatorname{LT}(G)$.

Exercise 46. Show that the result of applying the Euclidean Algorithm in $K[x]$ to any pair of polynomials f, g is a Gröbner basis for $\langle f, g\rangle$.
Exercise 47. Consider linear polynomials in $K\left[x_{1}, \ldots, x_{n}\right]$

$$
f_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \quad 1 \leq i \leq m
$$

and let $A=\left(a_{i j}\right)$ be the $m \times n$ matrix of their coefficients. Let B be the reduced row echelon matrix determined by A and let g_{1}, \ldots, g_{r} be the linear polynomials coming from the nonzero rows of B. Use lex order with $x_{1}>\cdots>x_{n}$ and show that $\left\{g_{1}, \ldots, g_{r}\right\}$ is a Groebner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

Exercise 48. Compute a Gröbner basis w.r.t. the lexicographic ordering with $x<y$ for the ideal generated by

$$
\begin{aligned}
& f_{1}=x y^{2}+x^{2}+x \\
& f_{2}=x^{2} y+x
\end{aligned}
$$

in $\mathbb{Z}_{3}[x, y]$ by using your favorite CA system.

