to be prepared for 11.01.2024

Exercise 37. We consider the modular GCD-algorithm for $\mathbb{F}[x, y]$.

INPUT: $f, g \in \mathbb{F}[x, y]$ primitive as polynomials in $\mathbb{F}[y][x]$, with $\deg_x f \ge \deg_x g$; $d \in \mathbb{N}$ with $d \ge \deg_y(f), \deg_y(g)$.

OUT: $h = \gcd(f, g)$.

Let $b = \gcd(\operatorname{lc}_x(f), \operatorname{lc}_x(g))$. Choose a monic irreducible $g \in \mathbb{F}[y]$ with $\deg p = d + 1 + \deg b$ and Let $\overline{\varphi}$ denote the result of reducing mod p a polynomial $\varphi \in \mathbb{F}[x, y]$, i.e.,

$$\mathbb{F}[y][x] \to \mathbb{F}[y]/\langle p \rangle[x], \ \varphi = \sum_{j} \varphi_{j}(y) x^{j} \mapsto \sum_{j} \left(\varphi_{j}(y) + \langle p \rangle \right) x^{j} = \overline{\varphi}.$$

Compute $w \in \mathbb{F}[x, y]$, $\deg_y w < \deg p$ with $\overline{w} = \overline{b} \cdot \gcd(\overline{f}, \overline{g})$.

Since $\overline{w} | \overline{fb}, \overline{w} | \overline{gb}$, we may compute $f^*, g^* \in \mathbb{F}[x, y]$ with $\deg_y(f^*), \deg_y(g^*) < \deg p$ and $\overline{f^*} = \frac{\overline{fb}}{\overline{w}}$ and $\overline{g^*} = \frac{\overline{gb}}{\overline{w}}$. Then the halting condition is

$$\deg_{y}(f^{\star}w) = \deg_{y}(fb) \text{ and } \deg_{y}(g^{\star}w) = \deg_{y}(gb).$$
(1)

Prove that the halting condition holds if and only if p does not divide the x-resultant of $\frac{f}{h}, \frac{g}{h}$, i.e.,

(1)
$$\iff \neg p \mid \operatorname{res}_x\left(\frac{f}{h}, \frac{g}{h}\right).$$

Exercise 38. In the situation of Exercise 37, although the degree of p is large enough to leave the coefficients of $\overline{f}, \overline{g}$ unaffected, create an example that demonstrates that the degree of gcd $(\overline{f}, \overline{g})$ may exceed deg p.

Exercise 39. Again the situation of Exercise 37 prove that the number of unlucky primes is small, i.e., the cardinality of the set of all monic irreducibles $p \in \mathbb{F}[y]$ with a fixed degree $d + 1 + \deg b$ that divide $\operatorname{res}_x(f/h, g/h)$ is at most $2 \cdot \deg_x f$.

Exercise 40. Let $f, g, h \in \mathbb{Z}[x]$ with degrees $n = \deg f \ge 1, m = \deg g, k = \deg h$, and assume that gh|f in $\mathbb{Z}[x]$. Prove that

$$||g||_1 ||h||_1 \le 2^{m+k} ||f||_2 \le (n+1)^{1/2} \cdot 2^{m+k} ||f||_{\infty}.$$

Derive from this that

$$||h||_{\infty} \le ||h||_2 \le 2^k ||f||_2 \le 2^k ||f||_1$$
 and $||h||_{\infty} \le ||h||_2 \le (n+1)^{1/2} \cdot 2^k ||f||_{\infty}$.

Exercise 41. Let $p \in \mathbb{N}$ be a prime number and consider the ring homomorphism

$$\mathbb{Z}[x] \longrightarrow \mathbb{Z}_p[x], \ f = \sum_k f_k x^k \mapsto \overline{f} = \sum_k \overline{f_k} x^k \text{ where } \overline{f_k} = f_k + \langle p \rangle.$$

Show the validity of the following statement:

If
$$f, g \in \mathbb{Z}[x]$$
 with $||f||_{\infty}, ||g||_{\infty} < \frac{p}{2}$ then $\overline{f} = \overline{g} \iff f = g$.