to be prepared for 14.12.2023

Exercise 32. Prove the following statement (part of the GCD-Theorem):
Let R be an ED, $f, g \in R[x]^{\star}$ and $p \in R$ a prime with $p \not\left\langle\operatorname{gcd}_{R}(\operatorname{lc}(f), \operatorname{lc}(g))\right.$; let $\mathbb{F}=R /\langle p\rangle$ be its quotient field. Then the following are equivalent:

1. $\operatorname{deg}\left(\operatorname{gcd}_{\mathbb{F}[x]}(\bar{f}, \bar{g})\right)=\operatorname{deg}\left(\operatorname{gcd}_{R[x]}(f, g)\right)$;
2. $\overline{\operatorname{lc}\left(\operatorname{gcd}_{R[x]}(f, g)\right)} \cdot \operatorname{gcd}_{\mathbb{F}[x]}(\bar{f}, \bar{g})=\overline{\operatorname{gcd}_{R[x]}(f, g)}$;
3. $p \chi_{R} \operatorname{res}\left(\frac{f}{\operatorname{gcd}_{R[x]}(f, g)}, \frac{g}{\operatorname{gcd}_{R[x]}(f, g)}\right)$.

Exercise 33. Let $<$ be a relation on \mathbb{N}^{n}.
Prove the equivalence of the following definitions of a monomial order.

1. $<$ is a well-order and $\forall_{\alpha, \beta, \gamma \in \mathbb{N}^{n}}(\alpha<\beta \Rightarrow \alpha+\gamma<\beta+\gamma)$;
2. $<$ is a total order and $\forall_{\alpha \in \mathbb{N}^{n}} 0 \leq \alpha$ and $\forall_{\alpha, \beta, \gamma \in \mathbb{N}^{n}}(\alpha<\beta \Rightarrow \alpha+\gamma<\beta+\gamma)$.

Exercise 34. Prove that $<_{\text {lex }},<_{\text {grlex }}$ and $<_{\text {grevlex }}$ are monomial orders in \mathbb{N}^{n}.
Exercise 35. Consider the polynomial $f=2 x y^{2}-x y+x^{3}$ in the ring $K[x, y]$. Find monomial orders $<_{1}$ and $<_{2}$ so that $\operatorname{lm}_{<_{1}}(f) \neq \operatorname{lm}_{<_{2}}(f)$.

Exercise 36. Let R be a commutative ring with 1 . Prove the equivalence of the following statements.

1. Every ideal in R has a finite basis.
2. Each non empty set of ideals has an element that is maximal with respect to inclusion.
3. Each increasing chain of ideals terminates, i.e., if $M_{1} \subseteq M_{2} \subseteq \cdots$ is an ascending chain of ideals then there is an $N \in \mathbb{N}$ s.t. $\forall n \geq N M_{n}=M_{N}$.

Note that this is true for submodules of a module over an arbitrary ring.

