to be prepared for 7.12.2023

Exercise 28. Let R be a UFD and $f, g \in R[x]$ not both zero. Prove that

 $gcd(f,g) \in R[x] \setminus R \iff res(f,g) = 0.$

Hint: Consider R as embedded in its quotient field and rewrite the vanishing of the resultant as a property of a (normalized) GCD.

Exercise 29. Prove the following theorem:

Let $f, g \in \mathbb{F}[x, y]$, $\deg_x f = n$, $\deg_x g = m$, and $d \in \mathbb{N}$ s.t. $\deg_y f$, $\deg_y g \leq d$. Then $\deg_y \operatorname{res}_x(fg) \leq (n+m)d$.

Exercise 30. Prove the following theorem:

Let $f, g \in \mathbb{Z}[x]$, deg f = n, deg g = m. Then

$$|\operatorname{res}(f,g)| \le ||f||_2^m ||g||_2^n \le (n+1)^{m/2} (m+1)^{n/2} ||f||_{\infty}^m ||g||_{\infty}^n.$$

Exercise 31. For application in modular algorithms we prove the following lemma:

Let R be a commutative ring with 1, $I \triangleleft R$ an ideal and $f, g \in R[x] \setminus 0$ s.t. $\overline{\operatorname{lc}(f)} \in R/I$ is not a zero divisor. Then

1. $\overline{\operatorname{res}(f,g)} = 0 \iff \operatorname{res}(\overline{f},\overline{g}) = 0.$

2. If R/I is a UFD, then $\overline{\operatorname{res}(f,g)} = 0 \iff \operatorname{gcd}(\overline{f},\overline{g}) \in (R/I)[x] \setminus (R/I)$

i.e., $gcd(\overline{f}, \overline{g})$ is nonconstant.