to be prepared for 30.11.2023

Exercise 24. Consider polyomials $f, g \in k[x]$ of positive degrees m, n respectively. Let I denote the ideal in k[x] generated by f, and let μ denote the multiplication map

$$\mu \colon k[x]/I \longrightarrow k[x]/I, \quad h+I \mapsto gh+I.$$

Demonstrate that $\operatorname{res}_x(f,g) = LC(f)^{\deg(g)} \det(\mu)$.

Exercise 25. Let R be a unique factorization domain with a normalization function, i.e., a map $N: R \to R$ s.t.

1.
$$\forall_{a,b} (a \sim b \Rightarrow N(a) = N(b))$$
 and $\forall_a N(a) \sim a;$

2.
$$\forall_{a,b} N(ab) = N(a)N(b).$$

We may then define the **leading unit** lu(a) as

$$\operatorname{lu}(a) = \begin{cases} \text{the unique } u \in R^+ \text{ with } a = u \cdot N(a) & \dots & a \neq 0 \\ 1 & \dots & a = 0. \end{cases}$$

Thus, $\forall_{a,b\in R} a = lu(a) \cdot N(a)$, and the leading unit provides a map lu: $R \to R^+$. Moreover we say that $a \in R$ is **normalized** provided that lu(a) = 1.

Prove the following statements:

- 1. N(1) = 1;
- 2. $\forall_{a,b\in R\setminus 0} \operatorname{lu}(ab) = \operatorname{lu}(a) \operatorname{lu}(b);$
- 3. $\forall_{a,b\in R} (a \text{ and } b \text{ normalized} \Rightarrow ab \text{ normalized});$
- 4. $\forall_{a,b\in R\setminus 0}$ (a and b normalized and $\exists_c a = bc \Rightarrow c$ normalized);
- 5. $\exists_{u \in R^+} a = bu \Rightarrow a = b;$
- 6. pp(a) is normalized.

Exercise 26. Let R be a UFD with normalization, i.e., with a map $N: R \to R$ as it is described in the previous exercise. For a polynomial $f \in R[x]$ set

$$\mathrm{LU}(f) := \begin{cases} \mathrm{lu}(\mathrm{lc}(f)) & \dots & f \neq 0\\ 1 & \dots & f = 0 \end{cases}$$

where lc(f) is the leading coefficient of $f \in R[x] \setminus 0$. Show that $N(f) := \frac{f}{LU(f)}$ defines a normalization on R[x] with corresponding leading unit LU.

Moreover show that the primitive part of a nonzero normalized polynomial $f \in R[x]$ is normalized.

Exercise 27. Let R be a UFD, $f, g \in R[x]$ and $h = \text{GCD}_{R[x]}(f, g)$. Prove that

- 1. $\operatorname{cont}(h) = \operatorname{gcd}_R(\operatorname{cont}(f), \operatorname{cont}(g))$ and $\operatorname{pp}(h) = \operatorname{GCD}_{R[x]}(\operatorname{pp}(f), \operatorname{pp}(g));$
- 2. $h = \operatorname{gcd}_R(\operatorname{cont}(f), \operatorname{cont}(g)) \cdot \operatorname{GCD}_{R[x]}(\operatorname{pp}(f), \operatorname{pp}(g));$
- 3. If f or g is primitive then so is h.
- 4. $h/lc(h) = GCD_{K[x]}(f, g)$ where K = Q(R).