to be prepared for 16.11.2023

Exercise 16. Let \mathbb{F} denote a field, and $a, b \in \mathbb{F}$ polynomials
with $\operatorname{deg} a<(\operatorname{deg} b) \cdot e$, where $e \in \mathbb{N} \backslash 0$. Develop an algorithm that computes $a_{1}, \ldots, a_{e} \in \mathbb{F}[x]$ with $\operatorname{deg} a_{i}<\operatorname{deg} b(1 \leq i \leq e)$ s.t.

$$
\frac{a}{b^{e}}=\frac{a_{1}}{b}+\frac{a_{2}}{b^{2}}+\cdots+\frac{a_{e}}{b^{e}} .
$$

Hint: Consider polynomial division in a Horner scheme style.
Exercise 17. Develop a recursive algorithm that computes a solution of a Chinese remainder problem in a Euclidean domain.

Exercise 18. Let $f=\sum_{k=0}^{n} f_{k} x^{k} \in \mathbb{C}[x]$ with $\operatorname{deg} f=n \geq 0$. Considering f as an element of \mathbb{C}^{n+1} we may assign to f the usual norms

$$
\|f\|_{p}=\left(\sum_{k=0}^{n}\left|f_{k}\right|\right)^{1 / p} \text { for } p \geq 1 \text { and }\|f\|_{\infty}=\max _{k}\left|f_{k}\right|
$$

Check the following relations:

1. $\|f\|_{\infty} \leq\|f\|_{2} \leq \sqrt{n+1}\|f\|_{\infty}$;
2. $\|f\|_{2} \leq\|f\|_{1} \leq(n+1)\|f\|_{\infty}$.

Exercise 19. Let $f \in \mathbb{C}[x]$ and $z \in \mathbb{C}$. Prove that

$$
\|(x-z) f\|_{2}=\|(\bar{z} x-1) f\|_{2}
$$

You may use $|w|^{2}=w \bar{w}$ for $w \in \mathbb{C}$ and that conjugation $w \mapsto \bar{w}$ is an automorphism of the field \mathbb{C}.

Exercise 20. For a complex polynomial $f \in \mathbb{C}[x]$ written as product of linear factors $f=f_{n}\left(x-z_{1}\right) \cdots\left(x-z_{n}\right)$, where $z_{k} \in \mathbb{C}$, the real number $M(f)$ is

$$
M(f)=\left|f_{n}\right| \cdot \prod_{k=1}^{n} \max \left(1,\left|z_{k}\right|\right)
$$

Prove the following statements.

1. $f, g \in \mathbb{C}[x] \Rightarrow M(f g)=M(f) \cdot M(g)$ and $M(f) \geq|\operatorname{lc}(f)|$;
2. $f \in \mathbb{C}[x] \Rightarrow M(f) \leq\|f\|_{2}$.

Hint to point 2:
Sort the zeros z_{1}, \ldots, z_{n} of f so that $\left|z_{j}\right| \geq\left|z_{j+1}\right|(j=1, \ldots, n-1)$ and let $k=\max \left\{j:\left|z_{j}\right|>1\right\}$. Then show that $M(f)$ equals the absolute value of the leading coefficient of the polynomial

$$
g=\operatorname{lc}(f) \cdot \prod_{j=1}^{k}(\bar{z} x-1) \cdot \prod_{j=k+1}^{n}\left(x-z_{j}\right)
$$

so that $M(f)^{2} \leq\|g\|_{2}^{2}$. Then by repeatedly applying the identity in Ex. 19 prove that $\|g\|_{2}^{2}=\|f\|_{2}^{2}$.

