to be prepared for 9.11.2023

Exercise 11. Let R be an integral domain and \sim the equivalence relation resulting from divisibility

$$
a \sim b \Longleftrightarrow a|b \wedge b| a
$$

Then R / \sim is partially ordered: $[a] \leq[b] \Longleftrightarrow a \mid b$.

1. Check that the equivalence class of $a \in R$ is the complex product $R^{\times} a$ (where R^{\times}is the group of multiplicative units).
2. Demonstrate that the complex product resulting from $\mathcal{P}(R)$ turns R / \sim into a commutative monoid and that the projection $\pi: R \rightarrow R / \sim$ is a homomorphism of monoids.
3. Let $\operatorname{Sec}(\pi)$ denote the set of all (set-theoretic) cross sections

$$
\operatorname{Sec}(\pi)=\left\{s: R / \sim \longrightarrow R \mid \pi \circ s=1_{R / \sim}\right\} .
$$

Establish a bijective correspondence of normalization maps $R \longrightarrow R$ with $\operatorname{Sec}(\pi)$ and show that, under this bijection, homomorphisms correspond to homomorphisms.

Exercise 12. Prove the following statements listed in the EEA-Lemma, where the input $f, g \in R$ (R a Euklidean domain), and the output $\rho_{i}, r_{i}, s_{i}, t_{i} \in R$ for $0 \leq i \leq l+1$ and q_{i} for $0 \leq i \leq l$.
4. $s_{i} f+t_{i} g=r_{i}($ also $i=l+1)$
5. $s_{i} t_{i+1}-t_{i} s_{i+1}=(-1)^{i}\left(\rho_{0} \cdots \rho_{i+1}\right)^{-1}$ and $\operatorname{gcd}\left(s_{i}, t_{1}\right)=1$
6. $\operatorname{gcd}\left(r_{i}, t_{i}\right)=\operatorname{gcd}\left(f, t_{i}\right)$
7. $f=(-1)^{i} \rho_{0} \cdots \rho_{i+1}\left(t_{i+1} r_{i}-t_{i} r_{i+1}\right)$ and
$g=(-1)^{i+1} \rho_{0} \cdots \rho_{i+1}\left(s_{i+1} r_{i}-s_{i} r_{i+1}\right)$
8. If $R=\mathbb{F}[x]$ then $\operatorname{deg}\left(t_{i}\right)+\operatorname{deg}\left(r_{i-1}\right)=\operatorname{deg}(f)$ for $i \geq 1$,

$$
\operatorname{deg}\left(s_{i}\right)+\operatorname{deg}\left(r_{i-1}\right)=\operatorname{deg}(g) \text { for } i>1
$$

Exercise 13. Let I be a unique factorization domain. Every $f \in I[x]$ can be decomposed into "content \times primitive part"

$$
f=\operatorname{cont}(f) \operatorname{pp}(f)
$$

where $\operatorname{cont}(f) \in I$ and $\operatorname{pp}(f) \in I[x]$ is primitive, i.e., the GCD of all coefficients is 1 . This decomposition is unique up to multiplication by units.
Given $f, g \in I[x]$, we write $f \sim g$ if there is a unit ε with $g=\varepsilon f$. Then prove the following:

1. $\operatorname{cont}(f g) \sim \operatorname{cont}(f) \cdot \operatorname{cont}(g)$
2. $\operatorname{pp}(f g) \sim \operatorname{pp}(f) \cdot \operatorname{pp}(g)$.

Exercise 14. Let R be a Euclidean domain and $m_{1}, \ldots, m_{n} \in R \backslash 0$ pairwise coprime. Prove the following statements.

1. The rings $R /\left\langle\prod_{i=1}^{n} m_{i}\right\rangle$ and $\prod_{i=1}^{n} R /\left\langle m_{i}\right\rangle$ are isomorphic.
2. $\prod_{i=1}^{n-1} m_{i}$ and m_{n} are relatively prime.
3. If $m_{1}, m_{2} \in R \backslash 0$ are coprime and $r, r^{\prime} \in R$ arbitrary, then $r \equiv r^{\prime} \bmod m_{1}$ and $r \equiv r^{\prime} \bmod m_{2}$ if and only if $r \equiv r^{\prime} \bmod m_{1} m_{2}$.

Exercise 15. Solve the Chinese remainder problem

$$
\begin{array}{ccc}
r \equiv & 62 & \bmod 79 \\
r \equiv & 66 & \bmod 83 \\
r \equiv & 72 & \bmod 89
\end{array}
$$

over the integers.

