to be prepared for 19.10.2023

Exercise 7. Give an example of a commutative ring with unit, that is not a Noetherian ring.

Exercise 8. Prove the following statement for univariate polynomials:
Let $f, g \in \mathbb{F}[x]$ where \mathbb{F} denotes a field. Then

$$
\operatorname{gcd}(f, g) \neq 1 \Longleftrightarrow \exists_{s, t \in \mathbb{F}[x] \backslash 0}(s f+t g=0 \wedge \operatorname{deg} s<\operatorname{deg} g \wedge \operatorname{deg} t<\operatorname{deg} f)
$$

Exercise 9. Let (S, \cdot) be a semigroup. For $X, Y \subseteq S$ we define the 'complex product'

$$
X \cdot Y=\{x y \mid x \in X \wedge y \in Y\} .
$$

This gives the power set $\mathcal{P}(S)$ of S the structure of a semigroup; if S is commutative (a monoid) then so is $\mathcal{P}(S)$.
Now assume that R is a commutative ring with 1 .

1. If $I \unlhd R$ is an ideal, show that the congruence class $\bmod I$ of an element $a \in R$ is the complex sum (the complex product w.r.t addition) of $\{a\}$ and I.
2. Show that the sum in the ring R / I is the complex sum inherited from $\mathcal{P}(R)$.
3. Describe the relation between the product in R / I and the complex product.

Exercise 10. Let R be an integral domain and \sim the equivalence relation resulting from divisibility

$$
a \sim b \Longleftrightarrow a|b \wedge b| a
$$

Then R / \sim is partially ordered: $[a] \leq[b] \Longleftrightarrow a \mid b$.

1. Check that the equivalence class of $a \in R$ is the complex product $R^{\times} a$ (where R^{\times}is the group of multiplicative units).
2. Demonstrate that the complex product resulting from $\mathcal{P}(R)$ turns R / \sim into a commutative monoid and that the projection $\pi: R \rightarrow R / \sim$ is a homomorphism of monoids.
3. Let $\operatorname{Sec}(\pi)$ denote the set of all (set-theoretic) cross sections

$$
\operatorname{Sec}(\pi)=\left\{s: R / \sim \longrightarrow R \mid \pi \circ s=1_{R / \sim}\right\} .
$$

Establish a bijective correspondence of normalization maps $R \longrightarrow R$ with $\operatorname{Sec}(\pi)$ and show that, under this bijection, homomorphisms correspond to homomorphisms.

Exercise 11. Prove the following statements listed in the EEA-Lemma, where the input $f, g \in R$ (R a Euklidean domain), and the output $\rho_{i}, r_{i}, s_{i}, t_{i} \in R$ for $0 \leq i \leq l+1$ and q_{i} for $0 \leq i \leq l$.
4. $s_{i} f+t_{i} g=r_{i}($ also $i=l+1)$
5. $s_{i} t_{i+1}-t_{i} s_{i+1}=(-1)^{i}\left(\rho_{0} \cdots \rho_{i+1}\right)^{-1}$ and $\operatorname{gcd}\left(s_{i}, t_{1}\right)=1$
6. $\operatorname{gcd}\left(r_{i}, t_{i}\right)=\operatorname{gcd}\left(f, t_{i}\right)$
7. $f=(-1)^{i} \rho_{0} \cdots \rho_{i+1}\left(t_{i+1} r_{i}-t_{i} r_{i+1}\right)$ and

$$
g=(-1)^{i+1} \rho_{0} \cdots \rho_{i+1}\left(s_{i+1} r_{i}-s_{i} r_{i+1}\right)
$$

8. If $R=\mathbb{F}[x]$ then $\operatorname{deg}\left(t_{i}\right)+\operatorname{deg}\left(r_{i-1}\right)=\operatorname{deg}(f)$ for $i \geq 1$,

$$
\operatorname{deg}\left(s_{i}\right)+\operatorname{deg}\left(r_{i-1}\right)=\operatorname{deg}(g) \text { for } i>1
$$

