to be prepared for 19.10.2023

Exercise 7. Give an example of a commutative ring with unit, that is not a Noetherian ring.

Exercise 8. Prove the following statement for univariate polynomials:

Let $f, g \in \mathbb{F}[x]$ where \mathbb{F} denotes a field. Then

$$gcd(f,g) \neq 1 \iff \exists_{s,t \in \mathbb{F}[x] \setminus 0} (sf + tg = 0 \land \deg s < \deg g \land \deg t < \deg f).$$

Exercise 9. Let (S, \cdot) be a semigroup. For $X, Y \subseteq S$ we define the 'complex product'

$$X \cdot Y = \{ xy \mid x \in X \land y \in Y \}.$$

This gives the power set $\mathcal{P}(S)$ of S the structure of a semigroup; if S is commutative (a monoid) then so is $\mathcal{P}(S)$.

Now assume that R is a commutative ring with 1.

- 1. If $I \leq R$ is an ideal, show that the congruence class mod I of an element $a \in R$ is the complex sum (the complex product w.r.t addition) of $\{a\}$ and I.
- 2. Show that the sum in the ring R/I is the complex sum inherited from $\mathcal{P}(R)$.
- 3. Describe the relation between the product in R/I and the complex product.

Exercise 10. Let R be an integral domain and \sim the equivalence relation resulting from divisibility

$$a \sim b \iff a | b \wedge b | a.$$

Then R/\sim is partially ordered: $[a] \leq [b] \iff a|b$.

- 1. Check that the equivalence class of $a \in R$ is the complex product $R^{\times}a$ (where R^{\times} is the group of multiplicative units).
- 2. Demonstrate that the complex product resulting from $\mathcal{P}(R)$ turns R/\sim into a commutative monoid and that the projection $\pi: R \to R/\sim$ is a homomorphism of monoids.
- 3. Let $Sec(\pi)$ denote the set of all (set-theoretic) cross sections

$$\operatorname{Sec}(\pi) = \left\{ s \colon R/\sim \longrightarrow R \mid \pi \circ s = 1_{R/\sim} \right\}.$$

Establish a bijective correspondence of normalization maps $R \longrightarrow R$ with $\operatorname{Sec}(\pi)$ and show that, under this bijection, homomorphisms correspond to homomorphisms.

Exercise 11. Prove the following statements listed in the **EEA-Lemma**, where the input $f, g \in R$ (R a Euklidean domain), and the output $\rho_i, r_i, s_i, t_i \in R$ for $0 \le i \le l+1$ and q_i for $0 \le i \le l$.

- 4. $s_i f + t_i g = r_i$ (also i = l + 1)
- 5. $s_i t_{i+1} t_i s_{i+1} = (-1)^i (\rho_0 \cdots \rho_{i+1})^{-1}$ and $gcd(s_i, t_1) = 1$
- 6. $gcd(r_i, t_i) = gcd(f, t_i)$
- 7. $f = (-1)^i \rho_0 \cdots \rho_{i+1} (t_{i+1} r_i t_i r_{i+1})$ and $g = (-1)^{i+1} \rho_0 \cdots \rho_{i+1} (s_{i+1} r_i - s_i r_{i+1})$
- 8. If $R = \mathbb{F}[x]$ then $\deg(t_i) + \deg(r_{i-1}) = \deg(f)$ for $i \ge 1$, $\deg(s_i) + \deg(r_{i-1}) = \deg(g)$ for i > 1.