to be prepared for 12.10.2023

Exercise 1. Consider the integers $a=215712, b=739914$. Determine the gcd of a and b and integers s, t such that $\operatorname{gcd}(a, b)=s a+t b$.

Exercise 2. Compute the GCD of

$$
\begin{aligned}
& f(x)=6 x^{5}+2 x^{4}-19 x^{3}-6 x^{2}+15 x+9 \\
& g(x)=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2 .
\end{aligned}
$$

Exercise 3. Demonstrate that a finite integral domain is necessarily a field.
Exercise 4. Write an algorithm that inverts unit elements in $\mathbb{Z} / n \mathbb{Z}(n \in \mathbb{N})$.
Exercise 5. Consider the polynomials f_{1}, \ldots, f_{m} in the ring $K\left[x_{1}, \ldots, x_{n}\right]$. Prove that the set

$$
\left\{\sum_{j=1}^{m} h_{j} f_{j} \mid \forall_{1 \leq j \leq m} h_{j} \in K\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

is the smallest ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ that contains the set $\left\{f_{1}, \ldots, f_{m}\right\}$.
Exercise 6. We can check that the polynomial ring $K[x]$ over a field K is an integral domain by considering the degree function.

1. Prove, by a similar argument, that also the ring $K[[x]]$ of formal power series is an integral domain. Moreover show that $\mathrm{K}[[\mathrm{x}]]$ is an Euclidean domain by introducing an appropriate function and verifying the required properties.
2. Show that $K[[x]]$ is a local ring.
