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Algorithm (Normalized) extended Euclidean algorithm
Input: f, g ∈ R with R Euclidean domain.
Output: ρi, ri, si, ti ∈ R for 0 ≤ i ≤ l + 1 and qi for 0 ≤ i ≤ l

1. ρ0 = lu(f), r0 = normal(f)(= f/ρ0), s0 = ρ−1
0 , t0 = 0

ρ1 = lu(g), r1 = normal(g)(= g/ρ1), s1 = 0, t1 = ρ−1
1

2. i=1
while ri ̸= 0 do
qi = ri−1 quot ri
ri+1 = ri−1remri(= ri−1 − qi ri))
ρi+1 = lu(ri+1)
ri+1 = normal(ri+1)(= ri+1/ρi+1)
si+1 = (si−1 − qi si)/ρi+1

ti+1 = (ti−1 − qi ti)/ρi+1

i = i+ 1
od

3. l = i− 1
return ρi, ri, si, ti for 0 ≤ i ≤ l + 1, qi for 0 ≤ i ≤ l
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Define
R0 =

(
s0 t0
s1 t1

)
Qi =

(
0 1

ρ−1
i+1 −qiρ

−1
i+1

)
, Ri = Qi . . . Q1R0 0 ≤ i ≤ l

EEA-Lemma. For 0 ≤ i ≤ l:

(i) Ri

(
f
g

)
=

(
ri
ri+1

)
(ii) Ri =

(
si ti
si+1 ti+1

)
(iii) ri, ri+1 and f, g have gcds, in particular: gcd(f, g) = gcd(ri, ri+1) = rl
(iv) si f + ti g = ri (also i = l + 1)

(v) si ti+1 − ti si+1 = (−1)i(ρ0 . . . ρi+1)
−1 and gcd(si, ti) = 1

(vi) gcd(ri, ti) = gcd(f, ti)

(vii) f = (−1)iρ0 . . . ρi+1(ti+1 ri − ti ri+1) and
g = (−1)i+1ρ0 . . . ρi+1(si+1 ri − si ri+1)

(viii) If R = F[x] then deg(ti) + deg(ri−1) = deg(f) for i ≥ 1,
deg(si) + deg(ri−1) = deg(g) for i > 1.
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Algorithm CRA (Chinese Remainder Algorithm)
Input: m0, . . . ,mr−1 ∈ R∗ \R+ pairwise coprime,

v0, . . . , vr−1 ∈ R with R ED.
Output: f ∈ R with d(f) < d(m0) + . . . d(mr−1) such that for 0 ≤ i < r:

mi | f − vi ⇔ f ≡ vi mod mi

1. m = m0 . . .mr−1 ∈ R

2. for 0 ≤ i < r do

3. fi = m/mi ∈ R

4. call the EEA and compute si, ti ∈ R such that si fi + timi = 1

5. ci = vi si remmi ∈ R [note:d(ci) < d(mi)]

6. od

7. return f =
∑r−1

i=0 ci fi

Remark 1: li = si fi and ci fi = vi li remm.

Remark 2: If d(vi) < d(mi) then f remmi = vi.

Remark 3: The computation of ti in the EEA can be skipped.
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Theorem (Rational function reconstruction) Let h, f ∈ F[x] with
deg(f) < deg(h) =: n and k ∈ {1, . . . , n}. Let {(rj , sj , tj)} be the ERS of
h and f and let j ∈ N be minimal such that deg(rj) < k. Then:

1. There exist r, t ∈ Z with

r ≡ t f mod m where deg(rj) < k and deg(tj) ≤ n− k,

namely (r, t) = (rj , tj).

If gcd(rj , tj) = 1 then gcd(tj , h) = 1.

2. If r
t ∈ F(x) is a canonical form solution to

r ≡ t f mod h ⇔ r t−1 ≡ f mod h

with deg(t) ≤ n− k, deg(r) < k and gcd(t, h) = 1, then

(r, t) =
1

lc(tj)

(
rj , tj

)
.

3. There is a solution as in 2 iff gcd(rj , tj) = 1.
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Theorem (Rational number reconstruction) Let m, f ∈ N with f < m
and k ∈ {1, . . . ,m}. Let {(rj , sj , tj)} be the ERS of m and f and let
j ∈ N be minimal such that rj < k.

Define q ∈ N∗ with

rj−1 − q rj < k ≤ rj−1 − (q − 1)rj [q = 0 if j = l + 1]

Set r∗j = rj−1 − q rj , t∗j = tj−1 − q tj .

1. There exist r, t ∈ Z with

r ≡ t f mod m where |m| < k and 0 ≤ t ≤ m

k
,

namely (r, t) = sgn(tj)(rj , tj). If gcd(rj , tj) = 1 then gcd(tj ,m) = 1.

2. If r
t ∈ Z is a canonical form solution to

r ≡ t f mod m ⇔ r t−1 ≡ f mod m

with deg(t) ≤ m
k , deg(r) < k and gcd(t,m) = 1, then

(r, t) = sgn(tj)
(
rj , tj

)

or (r, t) = sgn(t∗j )
(
r∗j , t

∗
j

)
.

3. There is a solution as in 2 iff gcd(rj , tj) = 1

or (gcd(r∗j , t
∗
j ) = 1 and |t∗j | ≤ m

k )

4. There is at most one solution as in 2 with |r| < k
2 .
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Corollary PP-Cont Let R be an UFD and let f, g ∈ R[x]. Then:

1. pp(f g) = pp(f) pp(g)

2. cont(f g) = cont(f) cont(g)

Corollary UFD-GCD Let R be an UFD. Let f, g ∈ R[x] and define
h = gcdR[x](f, g). Then:

1. We can split gcd-calculation problem by

h = gcdR(cont(f), cont(g)) · gcdR[x](pp(f), pp(g))

In particular, h is primitive if f or g are primitive.

2. We have
h

lc(h)
= gcdK[x](f, g)

in the quotient field K = Q(R).
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Algorithm GCD for R[x]
Input: f, g ∈ R[x]∗ with UFD R and its quotient field K = Q(R)

where one can compute gcds in R and K is computable.
Output: gcd(f, g) ∈ R[x]

1. f̃ = pp(f), c̃ = cont(f)

g̃ = pp(g), d̃ = cont(g)

2. Compute the following gcds in R:

a = gcdR(c̃, d̃) ∈ R

b = gcdR(lc(f̃), lc(g̃)) ∈ R

3. Call the Euclidean algorithm in K[x] to get the monic polynomial

v = gcdK[x](f̃ , g̃) ∈ K[x]

4. return a pp(b v)

Remark: In step 1 (and most probably in step 3) we also utilize gcd
computations in R.
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As a consequence one obtains the following general statement.

Corollary Let E = G[x1, . . . , xn] be a polynomial ring over a UFD G.
Suppose that one can compute gcds in G and that the quotient field Q(G)
is computable. Then one can compute gcds in E and can carry out the field
operations in Q(E).

Proof. By induction on the number n of variables.

▶ If n = 0, the corollary holds.

▶ Suppose that one can compute gcds in the UFD R = G[x1, . . . , xn−1]
and that the field operations in Q(R) can be executed.
Then one can execute the algorithm above to compute gcds in
E = R[xn]. In addition, one can carry out the field operations in
Q(R[xn]) = Q(E); note that one can even calculate reduced
representations in Q(E), i.e., the numerators and denominators in
G[x1, . . . , xn−1, xn] are co-prime.

Remark: If G is a field, one obtains much more efficient algorithms; soon
we will consider, e.g., R = G[x, y] for a field G.
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Thm. Let f, g ∈ F[x]∗ with n = deg(f), m = deg(g). Then:

1. gcd(f, g) = 1 iff ϕ is an isomorphism.
2. If gcd(f, g) = 1, then the output

sl and tl

of the EEA is the unique solution in F[x]<m × F[x]<n of ϕ(sl, tl) = 1.

⇕

Corollary F[x]-res. Let f, g ∈ F[x]∗ with n = deg(f), m = deg(g). Then:

1. gcd(f, g) = 1 iff det(S) ̸= 0.
2. If gcd(f, g) = 1 and the ai, bi are a solution of the system above, then

sl =

m−1∑
k=0

akx
k and tl =

n−1∑
k=0

bkx
k

are the Bezout coefficients in sl f + tl g = 1 also produced by the EEA.

Corollary UFD-res. Let R be an UFD, f, g ∈ R[x], not both zero. Then:

gcd(f, g) ∈ R[x] \R ⇔ res(f, g) = 0 in R.
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Let s =
∑m−1

k=0 akx
k, t =

∑n−1
k=0 bkx

k, f =
∑n

k=0 fkx
k, g =

∑m
k=0 fkx

k.
Then

s f + t g = h =

n+m−1∑
k=0

hk x
k

⇕



fn

0 gm

fn−1

fn gm−1 gm

fn g1
g0 g1

g0 gm

f0

f0

g0





m︷ ︸︸ ︷ n︷ ︸︸ ︷

︸ ︷︷ ︸
=: Syl(f,g)



am−1
am−2

a0
bn−1
bn−2

b0



=



hm+n−1
hm+n−2

h0
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Thm. Let f, g ∈ F[x]∗ with n = deg(f), m = deg(g). Then:

1. gcd(f, g) = 1 iff ϕ is an isomorphism.
2. If gcd(f, g) = 1, then the output

sl and tl

of the EEA is the unique solution in F[x]<m × F[x]<n of ϕ(sl, tl) = 1.

⇕

Corollary F[x]-res. Let f, g ∈ F[x]∗ with n = deg(f), m = deg(g). Then:

1. gcd(f, g) = 1 iff det(S) ̸= 0.
2. If gcd(f, g) = 1 and the ai, bi are a solution of the system above, then

sl =

m−1∑
k=0

akx
k and tl =

n−1∑
k=0

bkx
k

are the Bezout coefficients in sl f + tl g = 1 also produced by the EEA.

Corollary UFD-res. Let R be an UFD, f, g ∈ R[x], not both zero. Then:

gcd(f, g) ∈ R[x] \R ⇔ res(f, g) = 0 in R.
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1. Coefficients bounds in F[y]

Theorem. Let f, g ∈ F[x, y] with n = degx(f) and m = degx(g) and
degy(f), degy(g) ≤ d. Then

degy resx(f, g) ≤ (n+m)d.

2. Coefficients bounds in Z

For f =
∑d

n=0 fn x
n ∈ C[x] define the 2-norm

∥f∥2=
( d∑

n=0

|fn|2
)1/2

, |a| = (a · ā)1/2 ∈ R
and the max-norm

∥f∥∞= max{|fn| : 0 ≤ n ≤ d}.
Note:

∥f∥∞≤∥f∥2≤ (n+ 1)1/2 ∥f∥∞
Theorem. Let f, g ∈ Z[x] with n = deg(f) and m = deg(g). Then

|resx(f, g)| ≤ ∥f∥m2 ∥g∥n2 ≤ (n+ 1)m/2(m+ 1)n/2 ∥f∥m∞ ∥g∥n∞ .
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and the max-norm

∥f∥∞= max{|fn| : 0 ≤ n ≤ d}.
Note:

∥f∥∞≤∥f∥2≤ (n+ 1)1/2 ∥f∥∞

Theorem. Let f, g ∈ Z[x] with n = deg(f) and m = deg(g). Then

|resx(f, g)| ≤ ∥f∥m2 ∥g∥n2 ≤ (n+ 1)m/2(m+ 1)n/2 ∥f∥m∞ ∥g∥n∞ .



18

1. Coefficients bounds in F[y]

Theorem. Let f, g ∈ F[x, y] with n = degx(f) and m = degx(g) and
degy(f), degy(g) ≤ d. Then

degy resx(f, g) ≤ (n+m)d.

2. Coefficients bounds in Z

For f =
∑d

n=0 fn x
n ∈ C[x] define the 2-norm

∥f∥2=
( d∑

n=0

|fn|2
)1/2

, |a| = (a · ā)1/2 ∈ R
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Lemma. Let f, g ∈ R[x]∗ and I be an ideal in R with I ̸= R. Suppose
that1 lc(f) ∈ R/I is not a zero-divisor. Then:

1. res(f, g) = 0̄ ⇔ res(f̄ , ḡ) = 0̄.

2. If R/I is a UFD then

res(f, g) = 0̄ ⇔ gcd(f̄ , ḡ) /∈ R/I.

Proof. (1) will be settled as a homework.

(2) follows by

res(f, g) = 0̄
(1)⇐⇒ res(f̄ , ḡ) = 0̄

Cor. UFD-res⇐⇒ gcd(f̄ , ḡ) /∈ R/I.

1Note that deg(f) = deg(f̄) and thus lc(f) = lc(f̄) does not hold in general.
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GCD-Theorem. Let R be an ED, f, g ∈ R[x]∗ and p ∈ R be prime with
p ∤ gcdR(lc(f), lc(g)); let F = R/⟨p⟩ be its quotient field. Then:

(i) lc(gcdR[x](f, g)) | gcdR(lc(f), lc(g)).

(ii) deg(gcdF[x](f̄ , ḡ)) ≥ deg(gcdR[x](f, g)).

(iii)
deg(gcdF[x](f̄ , ḡ)) = deg(gcdR[x](f, g))

⇕1

lc(gcdR[x](f, g)) · gcdF[x](f̄ , ḡ) = gcdR[x](f, g)

⇕2

p ∤R res
( f

gcdR[x](f, g)
,

g

gcdR[x](f, g)

)
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Lecture 9: November 14, 2023
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Algorithm modGCD for F[x, y] (big prime version)
Input: primitive f, g ∈ F[x, y] = R[x] with R = F[y] where n = degx(f) ≥

degx(g) ≥ 1 and degy(f),degy(g) ≤ d for some d ∈ N.
Output: h = gcd(f, g) ∈ F[x, y]

1. Compute b := gcdF[y](lcx(f), lcx(g)) ∈ F[y] and set ℓ = d+ 1 + degy(b)

2. repeat

3. choose a random monic irreducible p ∈ F[y] with degy(p) = ℓ

4. call the EEA for f̄ , ḡ ∈ E[x] over the field E = F[y]/⟨p⟩ to get the
monic v ∈ R[x] with degy(v) < ℓ such that v̄ = gcd(f̄ , ḡ) ∈ E[x].

5. Compute w, f∗, g∗ ∈ R[x] with degy(w),degy(f
∗),degy(g

∗) < ℓ
where

w̄ = b v, f̄∗ =
f̄

v̄
, ḡ∗ =

ḡ

v̄

6. until degy(f
∗w) = degy(bf) and degy(g

∗w) = degy(bg)

7. return ppx(w)



23

Theorem. Let f, g ∈ R[x] be primitive where R = F[y]. Let
h = gcdR[x](f, g) and r = resx(f/h, g/h) ∈ R.
Let w ∈ F[x] as calculated in the algorithm above after one loop. Then:

1. deg(r) ≤ 2nd where n = degx(f) ≥ degx(g) ≥ 1 and
d ≥ degy(f),degy(g).

2. p ∤R r if and only if the halting condition holds.

3. If p ∤R r then h = ppx(w).

Lemma. Let R be an ED and f, g ∈ R[x]∗, and p prime in R with
p ∤ gcdR(lc(f), lc(g)); let F = R/⟨p⟩ be the quotient field.
If

gcdF[x](f̄ , ḡ) = 1

then
gcdR[x](f, g) = gcdR(cont(f), cont(g)).
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For f =
∑d

n=0 fn x
n ∈ C[x] define the q-norm (q ∈ N∗)

∥f∥q=
( d∑

n=0

|fn|q
)1/q

, |a| = (a · ā)1/2 ∈ R
and the max-norm

∥f∥∞= max{|fn| : 0 ≤ n ≤ d}.

Note (Ex. 18):

∥f∥∞ ≤∥f∥2≤ (n+ 1)1/2 ∥f∥∞
∥f∥2 ≤∥f∥1≤ (n+ 1) ∥f∥∞

Theorem Mignotte. Let f, g, h ∈ Z[x] with deg(f) = n, deg(g) = m and
deg(h) = k. Suppose that g h | f . Then

∥g∥∞ ∥h∥∞≤∥g∥2 ∥h∥2

≤∥g∥1 ∥h∥1
Ex.
≤ 2m+k ∥f∥2 ≤ (n+ 1)1/22m+k ∥f∥∞

Special case (g = 1):

∥h∥∞≤∥h∥2≤∥h∥1≤ 2k ∥f∥2≤ (n+ 1)1/22k ∥f∥∞ .
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and the max-norm

∥f∥∞= max{|fn| : 0 ≤ n ≤ d}.
Note (Ex. 18):

∥f∥∞ ≤∥f∥2≤ (n+ 1)1/2 ∥f∥∞
∥f∥2 ≤∥f∥1≤ (n+ 1) ∥f∥∞

Theorem Mignotte. Let f, g, h ∈ Z[x] with deg(f) = n, deg(g) = m and
deg(h) = k. Suppose that g h | f . Then

∥g∥∞ ∥h∥∞≤∥g∥2 ∥h∥2 ≤∥g∥1 ∥h∥1
Ex.
≤ 2m+k ∥f∥2 ≤ (n+ 1)1/22m+k ∥f∥∞

Special case (g = 1):

∥h∥∞≤∥h∥2≤∥h∥1≤ 2k ∥f∥2≤ (n+ 1)1/22k ∥f∥∞ .



24

For f =
∑d

n=0 fn x
n ∈ C[x] define the q-norm (q ∈ N∗)

∥f∥q=
( d∑

n=0

|fn|q
)1/q

, |a| = (a · ā)1/2 ∈ R
and the max-norm

∥f∥∞= max{|fn| : 0 ≤ n ≤ d}.
Note (Ex. 18):

∥f∥∞ ≤∥f∥2≤ (n+ 1)1/2 ∥f∥∞
∥f∥2 ≤∥f∥1≤ (n+ 1) ∥f∥∞

Theorem Mignotte. Let f, g, h ∈ Z[x] with deg(f) = n, deg(g) = m and
deg(h) = k. Suppose that g h | f . Then

∥g∥∞ ∥h∥∞≤∥g∥2 ∥h∥2 ≤∥g∥1 ∥h∥1
Ex.
≤ 2m+k ∥f∥2 ≤ (n+ 1)1/22m+k ∥f∥∞

Special case (g = 1):

∥h∥∞≤∥h∥2≤∥h∥1≤ 2k ∥f∥2≤ (n+ 1)1/22k ∥f∥∞ .



25

Corollary. Let f, g ∈ Z[x] with n = deg(f) ≥ deg(g) ≥ 1 and
∥f∥∞, ∥g∥∞≤ A. Then

∥gcd(f, g)∥∞≤ (n+ 1)1/22nA.

Lemma. Let f, g ∈ Z[x] with ∥f∥∞, ∥g∥∞< p
2 . Then

f̄ = ḡ ⇔ f = g.
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Recall: Algorithm modGCD for F[x, y] (big prime version)
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3. choose a random monic irreducible p ∈ F[y] with degy(p) = ℓ

4. call the EEA for f̄ , ḡ ∈ E[x] over the field E = F[y]/⟨p⟩ to get the
monic v ∈ R[x] with degy(v) < ℓ such that v̄ = gcd(f̄ , ḡ) ∈ E[x].

5. Compute w, f∗, g∗ ∈ R[x] with degy(w),degy(f
∗),degy(g

∗) < ℓ
where

w̄ = b v, f̄∗ =
f̄

v̄
, ḡ∗ =

ḡ

v̄

6. until degy(f
∗w) = degy(bf) and degy(g

∗w) = degy(bg)

7. return ppx(w)



27

Algorithm modGCD for Z[x] (big prime version)
Input: primitive f, g ∈ Z[x] with n = deg(f) ≥ deg(g) ≥ 1 and

∥f∥∞, ∥g∥∞ ≤ A for some A ∈ N.
Output: h = gcd(f, g) ∈ Z[x]

1. Compute b := gcdZ(lc(f), lc(g)) and set B = (n+ 1)1/22nAb

2. repeat

3. choose a random prime p with 2B < p

4. call the EEA for f̄ , ḡ ∈ Zp[x] over the finite field Zp to get the monic
v ∈ R[x] with ∥v∥∞< p/2 such that v̄ = gcd(f̄ , ḡ) ∈ Zp[x].

5. Compute w, f∗, g∗ ∈ Z[x] with ∥w∥∞, ∥f∗∥∞, ∥g∗∥∞< p/2 where

w̄ = b v, f̄∗ = f̄
v̄ , ḡ∗ = ḡ

v̄

6. until ∥f∗∥1∥w∥1≤ B and ∥g∗∥1∥w∥1≤ B

7. return pp(w)
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Recall: Theorem. Let f, g ∈ R[x] be primitive where R = F[y]. Let
h = gcdR[x](f, g) and r = resx(f/h, g/h) ∈ R.
Let w ∈ F[x] as calculated in the algorithm above after one loop. Then:

1. deg(r) ≤ 2nd where n = degx(f) ≥ degx(g) ≥ 1 and
d ≥ degy(f),degy(g).

2. p ∤R r if and only if the halting condition holds.

3. If p ∤R r then h = ppx(w).

Theorem. Let f, g ∈ Z[x] be primitive. Let h = gcdZ[x](f, g) and
r = res(f/h, g/h) ∈ Z; note that lc(h) > 0.
Let w ∈ Z[x] as calculated in the algorithm above after one loop. Then:

1. |r| ≤ (n+ 1)nA2n4n where2 n = deg(f) ≥ deg(g) ≥ 1 and
A ≥∥f∥∞, ∥g∥∞.

2. p ∤Z r if and only if the halting condition holds.

3. If p ∤Z r then h = pp(w).

2There is the improved version |r| ≤ (n+ 1)nA2n.
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Algorithm modGCD for F[x, y] (small prime version)
Input: primitive f, g ∈ F[x, y] = R[x] with R = F[y] where n = degx(f) ≥

degx(g) ≥ 1 and degy(f),degy(g) ≤ d for some d ∈ N.
Output: h = gcd(f, g) ∈ F[x, y]

1. Compute b := gcdF[y](lcx(f), lcx(g)) ∈ F[y] and set ℓ = d+ 1 + degy(b)

2. repeat

3. choose a set S ⊆ F of ℓ evaluation points u with b(u) ̸= 0.

4. for each u ∈ S call the EEA to get vu = gcdF[x](f(x, u), g(x, u))

5. λ = min{deg(vu) | u ∈ S} and refine S := {u ∈ S | deg(vu) = λ}

6. if |S| ≥ ℓ then remove |S| − ℓ points from S else goto 3.

7. Compute by interpolation each coefficient in F[y] of the polynomials
w, f∗, g∗ ∈ R[x] with degy(w),degy(f

∗),degy(g
∗) < ℓ such that for

each u ∈ S we have

w(x, u) = b(u)vu, f∗(x, u) = f(x,u)
vu

, g∗(x, u) = g(x,u)
vu

.

8. until degy(f
∗w) = degy(bf) and degy(g

∗w) = degy(bg)

9. return ppx(w)
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Recall: Theorem. Let f, g ∈ R[x] be primitive where R = F[y]. Let
h = gcdR[x](f, g) and r = resx(f/h, g/h) ∈ R.
Let w ∈ F[x] as calculated in the algorithm above after one loop. Then:

1. deg(r) ≤ 2nd where n = degx(f) ≥ degx(g) ≥ 1 and
d ≥ degy(f),degy(g).

2. p ∤R r if and only if the halting condition holds.

3. If p ∤R r then h = ppx(w).

Theorem. Let f, g ∈ R[x] be primitive where R = F[y]. Let
h = gcdR[x](f, g) and r = resx(f/h, g/h) ∈ R.
Let w ∈ F[x] as calculated in the algorithm above after one loop using the ℓ
given points from S. Then:

1. deg(r) ≤ 2nd where n = degx(f) ≥ degx(g) ≥ 1 and
d ≥ degy(f),degy(g).

2. r(s) ̸= 0 for all s ∈ S if and only if the halting condition holds.

3. If r(s) ̸= 0 for all s ∈ S then h = ppx(w).
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Algorithm modGCD for Z[x] (small prime version)
Input: primitive f, g ∈ Z[x] with n = deg(f) ≥ deg(g) ≥ 1

and ∥f∥∞, ∥g∥∞≤ A for some A ∈ N.
Output: h = gcd(f, g) ∈ Z[x]
1. Compute b := gcdZ(lc(f), lc(g)) and set B = (n+ 1)1/22nAb.

Take ℓ = log2(2B + 1)

2. repeat

3. choose a set S of 2ℓ primes p with p ∤ b.
4. for each p ∈ S call the EEA to get the monic vp ∈ Z[x] where the

coefficients are from {0, . . . , p− 1} with v̄p = gcdZp[x](f̄ , ḡ)

5. λ = min{deg(vp) | p ∈ S} and refine S := {p ∈ S | deg(vp) = λ}
6. if |S| ≥ ℓ then remove |S| − ℓ points from S else goto 3.

7. Compute by CRA the coefficients of the polynomials w, f∗, g∗ ∈ Z[x]
with ∥w∥∞, ∥f∗∥∞, ∥g∗∥∞< (

∏
p∈S p)/2 s.t. for each p ∈ S we have

w̄ = b vp, f̄∗ =
f̄

vp
, ḡ∗ =

ḡ

vp
(reduction mod p)

8. until ∥f∗∥1∥w∥1≤ B and ∥g∗∥1∥w∥1≤ B

9. return pp(w)
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Recall: Theorem. Let f, g ∈ Z[x] be primitive. Let h = gcdZ[x](f, g) and
r = res(f/h, g/h) ∈ Z; note that lc(h) > 0.
Let w ∈ Z[x] as calculated in the algorithm above after one loop. Then:

1. |r| ≤ (n+ 1)nA2n where n = deg(f) ≥ deg(g) ≥ 1 and
A ≥∥f∥∞, ∥g∥∞.

2. p ∤Z r if and only if the halting condition holds.

3. If p ∤Z r then h = pp(w).

Theorem. Let f, g ∈ Z[x] be primitive. Let h = gcdZ[x](f, g) and
r = res(f/h, g/h) ∈ Z; note that lc(h) > 0.
Let w ∈ Z[x] as calculated in the algorithm above after one loop using the
ℓ primes given in S. Then:

1. |r| ≤ (n+ 1)nA2n where n = deg(f) ≥ deg(g) ≥ 1 and
A ≥∥f∥∞, ∥g∥∞.

2. p ∤Z r for all p ∈ S if and only if the halting condition holds.

3. If p ∤Z r for all p ∈ S then h = pp(w).
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Lecture 8: December 7, 2023
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Definition. A monomial order on F[x] is a relation < on Nn such that

1. < is a total order;

2. For all α, β, γ ∈ Nn:

α < β ⇒ α+ γ < β + γ

3. < is well-ordered, i.e.,

∀S ⊆ Nn ∃m ∈ S ∀s ∈ S : m ≤ s

⇕

∀s ∈ Nn : s ≥ 0.

Lemma Deg. Let < be a monomial order on F[x] and f, g ∈ F[x]∗. Then:
1. deg(f g) = deg(f) + deg(g);

2. If f + g ̸= 0 then

deg(f + g) ≤ max(deg(f),deg(g));

equality holds if deg(f) ̸= deg(g).
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Algorithm PolynomialReduce
Input: f, g1, . . . , gs ∈ F[x1, . . . , xn] =: R with a monomial order <.
Output: r, q1, . . . , qs ∈ R with f = r + q1 g1 + · · · + qs gs

where no
monomial in r is divisible by lt(gi) for all 1 ≤ i ≤ s.

1. r = 0, p = f , qi = 0 for 1 ≤ i ≤ s

2. while p ̸= 0 do

3. if lt(gi) | lt(p) for some 1 ≤ i ≤ s then

4. choose such an i and set qi = qi +
lt(pi)
lt(gi)

p = p− lt(pi)
lt(fi)

gi

5. else

6. r = r + lt(p), p = p− lt(p)

7. fi

8. od

9. return q1, . . . , qs, r

Remark: If s = n = 1 then q1 = quot (f, g1) and r = rem (f, g1)
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Lemma Mon. Let I ⊴ F[x] that is generated by a set M of monomials,
and let h be a monomial. Then:

h ∈ I ⇔ ∃m ∈ M : m | h.
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Lecture 11: January 11, 2024
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Definition. Let I ⊴ F[x], G ⊆ I finite, < monomial order.

⟨LT(I)⟩ = ⟨LT(G)⟩ ⇔: G is a GB of I

Lemma. Let G be a GB for I ⊴ F[x] w.r.t. < and f ∈ F[x].
Then there is a unique r ∈ F[x]:
1. f − r ∈ I;

2. no term of r is divisible by any monomial in LT(G).

Notation: For G ⊆ F[x] finite, f ∈ F[x],

f remG = PolynomialReduce(f,G) = r ∈ F[x].

Lemma Red. Let G be a GB for I ⊴ F[x] w.r.t. <. Then
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Lemma LT. Define

f =

s∑
i=1

ci x
αigi ∈ F[x]

g1, . . . , gs ∈ F[x]
α1, . . . , αs ∈ Nn

c1, . . . , cs ∈ F∗

with the following extra properties.

1. There is δ ∈ Nn such that for all 1 ≤ i ≤ n:

αi + deg(gi) = δ i.e., deg(xαigi) = δ

2. we have
deg(f) < δ.

Then for γi,j ∈ Nn with xγi,j = lcm(lm(gi), lm(gj)) with 1 ≤ i < j ≤ s:

(a) δ − γi,j ∈ Nn, i.e., xδ−γi,j ∈ F[x]

(b) deg(xδ−γi,jS(gi, gj)) < δ

(c) There exist ci,j ∈ F such that

f =
∑

1≤i<j≤s

ci,jx
δ−γi,jS(gi, gj)
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Lecture 11: January 18, 2024
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Algorithm GetGroebnerBasis (Buchberger’s algorithm)
Input: f1, . . . , fs ∈ F[x1, . . . , xn] with a monomial order <.
Output: A Gröbner basis G of ⟨f1, . . . , fs⟩ w.r.t. <.

1. Set G = {f1, . . . , fs}
2. repeat do

3. S = {}
(*let G = {g1, . . . , gσ}*)

4. for all i, j with 1 ≤ i < j < σ do

5. r = PolynomialReduce(S(gi, gj), G) = S(gi, gj) remG

6. if r ̸= 0 then S = S ∪ {r} fi

7. od

8. if S = {} then return G fi

9. G = G ∪ S

10. od

11. return G
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Definition. Let G be a GB of I ⊴ F[x] w.r.t. <. G is called reduced iff

1. lc(g) = 1 for all g ∈ G.

2. for all g ∈ G no monomial of g lies in ⟨LT(G \ {g})⟩.

Theorem ReducedGB.
There is an algorithm which computes for a given GB G of I ⊴ F[x] w.r.t.
< a reduced GB G′ of I w.r.t. <.

Theorem UniqueGB.
Let G1 and G2 be two reduced GB of I ⊴ F[x] w.r.t. <. Then G1 = G2.
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Lecture 12: January 25, 2024
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Theorem-Summary. I ⊴ F[x], G = {g1, . . . , gs} ⊆ I, < monomial order.
Then the following statements are equivalent.

1. ⟨LT(I)⟩ = ⟨LT(G)⟩, i.e., G is a GB of I

2. ∀p ∈ I ∃g ∈ G : lt(g) | lt(p).

3. ∀f ∈ F[x]:
f ∈ I ⇐⇒ f remG = 0.

4. PolynomialReduce implements a function,
i.e., for each input there is a unique output.
(“don’t care nondeterministic” → “don’t know nondeterministic”)

5. ∀1 ≤ i < j ≤ s : S(gi, gj) remG = 0

6. B = {b+ I | b ∈ B̂} forms a basis of the F-vector space F[x]/I with

B̂ = {m ∈ [x] | m remG = m}.
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Applications

1. Computation in the quotient ring R = F[x]/I

2. Ideal membership

3. Test ideal equality

4. Elimination property

5. Finding zeros

6. Radical ideal membership

7. Ideal operations (and the corresponding operations of varieties)

(a) sum of ideals

(b) product of ideals

(c) intersection of ideals

...


