Sheet 10

Discussion on 19 January, 2023

Exercise 1 Consider the functions

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} a(n) x^{n}, \\
& g(x)=3 x+x^{2} .
\end{aligned}
$$

Compute the first four coefficients of $g \circ f(x)$. Can arbitrarily many coefficients be so computed? Is there more than one solution?

Exercise 2 Compute the multiplicative inverses of the following:

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{5^{n}}, \quad x^{2}-6 x+9
$$

Exercise 3 Consider the function

$$
f(x)=\sin (x) .
$$

Can we use the formula in Theorem 7.14 to compute $\left(f^{-1}\right)^{\prime}(1 / 2)$? If so, compute it.
Exercise 4 Suppose that functions $f, g:(a, b) \rightarrow \mathbb{R}$ are differentiable on the interval (a,b). Prove Theorem 7.7(1).

Exercise 5 Suppose that functions $f, g:(a, b) \rightarrow \mathbb{R}$ are differentiable on the interval (a, b), and that $g(x) \neq 0$ for $x \in(a, b)$. Prove Theorem 7.7(3) Hint: Use Theorem 7.7(2).

Exercise 6 Compute the derivatives of the following functions:
a) $f(x)=\sqrt{\frac{x^{3}+x}{x^{2}+1}}$
b) $g(x)=\frac{x^{2} \sin (x)}{(1+x) \ln (x)}$
c) $\quad h(x)=\cos (\exp (\sqrt{x}))$

Exercise 7 Compute the derivatives of the following functions:
a) $f(x)=e^{\cos (x)}+\ln (x)$
b) $g(x)=\arcsin (x)$
c) $h(x)=\tan (x)$

Exercise 8 Consider the differential equation

$$
x f^{\prime \prime}(x)-5 f^{\prime}(x)+f(x)=0 .
$$

Suppose that we can represent a solution function $f(x)$ as a power series in x, i.e., $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Determine a formula for the coefficients a_{n} of x^{n}; this formula might be recursive - that is, a_{n} may depend on previous coefficients a_{n-1}, a_{n-2}, \ldots.

