Übungsblatt 1

Besprechung am 13/10/2022

Aufgabe 1. Sei $r \neq 1$. Zeigen Sie mit Hilfe der vollständigen Induktion, dass für alle $n \geq 0$ gilt

$$\sum_{i=0}^{n} r^{i} = \frac{1 - r^{n+1}}{1 - r}.$$

Aufgabe 2. Zeigen Sie:

- a) $\forall n \in \mathbb{N} : \sum_{k=1}^{n} (2k-1) = n^2;$
- b) $\forall n \in \mathbb{N}: \sum_{k=1}^{n} k^3 = (\sum_{k=1}^{n} k)^2$.

Aufgabe 3. Sei $x \ge -1$. Beweisen Sie mittels vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt

$$(1+x)^n \geqslant 1 + nx.$$

Aufgabe 4. Es sein K ein Körper. Beweisen Sie die folgenden Rechenregeln:

- a) Die Elemente 0 und 1 in K sind eindeutig bestimmt. (Die Null durch ihr Verhalten bezüglich der Addition, die Eins bzgl. der Multiplikation.)
- b) Das additive Inverse von $a \in K$ ist eindeutig bestimmt.
- c) Für $a \neq 0$ ist das multiplikative Inverse eindeutig bestimmt.

Aufgabe 5. Sei K ein Körper und seien $a, b \in K$ sowie $c, d \in K$ mit $c \neq 0$ und $d \neq 0$. Beweisen Sie die folgenden Rechenregeln für Körper. Gehen Sie dabei wie in der Vorlesung vor, indem Sie nur ein Axiom pro Schritt anwenden.

a)
$$c^{-1}d^{-1} = (cd)^{-1}$$

b)
$$\frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$$

(Hierbei ist wie üblich $\frac{a}{c} \coloneqq ac^{-1}.)$

Aufgabe 6. Unter den Voraussetzungen wie in Satz 1.11 und dessen Beweis, zeigen Sie die Eigenschaften 7-9 eines Körpers für \mathbb{Q} .

Aufgabe 7. Es sei K ein Körper und

$$K[x] := \left\{ \sum_{n=0}^{\infty} a_n x^n \mid a_n \in K, a_n = 0 \text{ für fast alle } n \right\}$$

die Menge der Polynome über K. Die Addition wird komponentenweise definiert durch

$$\sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} b_n x^n := \sum_{n=0}^{\infty} (a_n + b_n) x^n$$

und die Multiplikation durch

$$\sum_{n=0}^{\infty} a_n x^n \cdot \sum_{n=0}^{\infty} b_n x^n \coloneqq \sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k b_{n-k} \right) x^n.$$

Zeigen Sie: die Multiplikation ist sowohl assoziativ als auch kommutativ.

Aufgabe 8. Zeigen Sie: $\sqrt{3} \notin \mathbb{Q}$.