to be prepared for 26.01.2023

Exercise 51. Consider the partial order \leq_{π} on \mathbb{N}^n defined as

$$(a_1,\ldots,a_n) \leq_{\pi} (b_1,\ldots,b_n) \iff a_i \leq b_i \ \forall i \in \{1,\ldots,n\}.$$

Prove that any set $A \subseteq \mathbb{N}^n$ contains a finite set $B \subseteq A$ such that

 $\forall_{a \in A} \exists_{b \in B} \text{ with } b \leq_{\pi} a.$

Hint: You may proceed by applying the classical Hilbert Basis Theorem or by pure combinatorial observations.

Exercise 52. Given a monomial order $\langle \text{ on } \mathbb{N}^n$. A **Gröbner basis** for an ideal $I \leq \mathbb{F}[x_1, \ldots, x_n]$ is a finite subset $G \subseteq I$ with the property $\langle \text{LT}(G) \rangle = \langle \text{LT}(I) \rangle$.

Let G be a Gröbner basis for $I \leq \mathbb{F}[x_1, \ldots, x_n]$ and $f \in \mathbb{F}[x_1, \ldots, x_n]$. Prove that there exists a unique $r \in \mathbb{F}[x_1, \ldots, x_n]$ such that

1. $r \equiv f \mod I$;

2. no term of r is divisible by any monomial in LT(G).

Exercise 53. Consider linear polynomials in $\mathbb{F}[x_1, \ldots, x_n]$

$$f_i = a_{i1}x_1 + \dots + a_{in}x_n \qquad 1 \le i \le m$$

and let $A = (a_{ij})$ be the $m \times n$ matrix of their coefficients. Let B be the reduced row echelon matrix determined by A and let g_1, \ldots, g_r be the linear polynomials coming from the nonzero rows of B. Use lex order with $x_1 > \cdots > x_n$ and show that $\{g_1, \ldots, g_r\}$ is a Gröbner basis of $\langle f_1, \ldots, f_m \rangle$.

Notation: We write M(f) for the set of all monomials appearing with a nonzero coefficient in a polynomial f. Given a monomial order, lm(f) is the leading monomial of f, i.e., lm(f) = max M(f). For a set $G \subseteq \mathbb{F}[x_1, \ldots, x_n]$, $LM(G) = \{lm(g) \mid g \in G\}$. As usual, the leading term of f is lt(f) = lc(f)lm(f).

Exercise 54. A set $G \subseteq \mathbb{F}[x_1, \ldots, x_n] \setminus 0$ is called a **reduced Gröbner basis** (w.r.t. some monomial order) provided that

- 1. G is a Gröbner basis for $\mathbb{F}[x_1, \ldots, x_n] G$;
- 2. $\forall_{g \in G} \operatorname{lc}(g) = 1;$
- 3. $\forall_{g \in G} \operatorname{M}(g) \cap \langle \operatorname{LM}(G \setminus \{g\}) \rangle = \emptyset.$

Let G be a Gröbner basis for the ideal $I \leq \mathbb{F}[x_1, \ldots, x_n]$. Describe an algorithm which, starting from G, produces a reduced Gröbner basis for I.

Exercise 55. Let W be a set, ordered linearly by some relation < and let $P_{\text{fin}}(W)$ denote the set of finite subsets of W. For $A, B \in P_{\text{fin}}(W)$ define

$$A < B \iff \max(A\Delta B) \in B \tag{1}$$

where $A\Delta B = A \setminus B \cup B \setminus A$ is the symmetric difference.

Show that:

- 1. (1) is a linear order on $P_{\text{fin}}(W)$ that extends both, the (partial) order of containment $(A \subset B)$ and, via embedding $w \mapsto \{w\}$, the (linear) order <.
- 2. If < is a well-order on W then (1) is a well-order on $P_{\text{fin}}(W)$.