to be prepared for 26.01.2023

Exercise 51. Consider the partial order \leq_{π} on \mathbb{N}^{n} defined as

$$
\left(a_{1}, \ldots, a_{n}\right) \leq_{\pi}\left(b_{1}, \ldots, b_{n}\right) \Longleftrightarrow a_{i} \leq b_{i} \forall i \in\{1, \ldots, n\}
$$

Prove that any set $A \subseteq \mathbb{N}^{n}$ contains a finite set $B \subseteq A$ such that

$$
\forall_{a \in A} \exists_{b \in B} \text { with } b \leq_{\pi} a
$$

Hint: You may proceed by applying the classical Hilbert Basis Theorem or by pure combinatorial observations.

Exercise 52. Given a monomial order $<$ on \mathbb{N}^{n}. A Gröbner basis for an ideal $I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a finite subset $G \subseteq I$ with the property $\langle\operatorname{LT}(G)\rangle=\langle\operatorname{LT}(I)\rangle$.
Let G be a Gröbner basis for $I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Prove that there exists a unique $r \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that

1. $r \equiv f \bmod I$;
2. no term of r is divisible by any monomial in $\operatorname{LT}(G)$.

Exercise 53. Consider linear polynomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$

$$
f_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \quad 1 \leq i \leq m
$$

and let $A=\left(a_{i j}\right)$ be the $m \times n$ matrix of their coefficients. Let B be the reduced row echelon matrix determined by A and let g_{1}, \ldots, g_{r} be the linear polynomials coming from the nonzero rows of B. Use lex order with $x_{1}>\cdots>x_{n}$ and show that $\left\{g_{1}, \ldots, g_{r}\right\}$ is a Gröbner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

Notation: We write $\mathrm{M}(f)$ for the set of all monomials appearing with a nonzero coefficient in a polynomial f. Given a monomial order, $\operatorname{lm}(f)$ is the leading monomial of f, i.e., $\operatorname{lm}(f)=\max \mathrm{M}(f)$. For a set $G \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right], \operatorname{LM}(G)=\{\operatorname{lm}(g) \mid g \in G\}$. As usual, the leading term of f is $\operatorname{lt}(f)=\operatorname{lc}(f) \operatorname{lm}(f)$.

Exercise 54. A set $G \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \backslash 0$ is called a reduced Gröbner basis (w.r.t. some monomial order) provided that

1. G is a Gröbner basis for $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right] G$;
2. $\forall_{g \in G} \operatorname{lc}(g)=1$;
3. $\forall_{g \in G} \mathrm{M}(g) \cap\langle\operatorname{LM}(G \backslash\{g\})\rangle=\emptyset$.

Let G be a Gröbner basis for the ideal $I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Describe an algorithm which, starting from G, produces a reduced Gröbner basis for I.

Exercise 55. Let W be a set, ordered linearly by some relation $<$ and let $P_{\text {fin }}(W)$ denote the set of finite subsets of W. For $A, B \in P_{\text {fin }}(W)$ define

$$
\begin{equation*}
A<B \Longleftrightarrow \max (A \Delta B) \in B \tag{1}
\end{equation*}
$$

where $A \Delta B=A \backslash B \cup B \backslash A$ is the symmetric difference.
Show that:

1. (1) is a linear order on $P_{\text {fin }}(W)$ that extends both, the (partial) order of containment $(A \subset B)$ and, via embedding $w \mapsto\{w\}$, the (linear) order $<$.
2. If $<$ is a well-order on W then (1) is a well-order on $P_{\text {fin }}(W)$.
