to be prepared for 19.01.2023

Exercise 49. Consider the partial order \leq_{π} on \mathbb{N}^{n} defined as

$$
\left(a_{1}, \ldots, a_{n}\right) \leq_{\pi}\left(b_{1}, \ldots, b_{n}\right) \Longleftrightarrow a_{i} \leq b_{i} \forall i \in\{1, \ldots, n\}
$$

Prove that any set $A \subseteq \mathbb{N}^{n}$ contains a finite set $B \subseteq A$ such that

$$
\forall_{a \in A} \exists_{b \in B} \text { with } b \leq_{\pi} a
$$

Hint: You may proceed by applying the classical Hilbert Basis Theorem or by pure combinatorial observations.

Exercise 50. Let $<$ be a monomial order on $\mathbb{N}^{n}, I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ an ideal and $G \subseteq I$. Show that

$$
\langle\operatorname{LT}(G)\rangle=\langle\operatorname{LT}(I)\rangle \Longleftrightarrow \forall_{p \in I} \exists_{g \in G} \operatorname{lt}(g) \mid \operatorname{lt}(p)
$$

Exercise 51. Given a monomial order $<$ on \mathbb{N}^{n}. A Gröbner basis for an ideal $I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a finite subset $G \subseteq I$ with the property $\langle\operatorname{LT}(G)\rangle=\langle\operatorname{LT}(I)\rangle$. Let G be a Gröbner basis for $I \unlhd \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Prove that there exists a unique $r \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that

1. $r \equiv f \bmod I$;
2. no term of r is divisible by any monomial in $\operatorname{LT}(G)$.

Exercise 52. Show that the result of applying the Euclidean Algorithm in $\mathbb{F}[x]$ to any pair of polynomials f, g is a Gröbner basis for $\langle f, g\rangle$.
Exercise 53. Consider linear polynomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$

$$
f_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \quad 1 \leq i \leq m
$$

and let $A=\left(a_{i j}\right)$ be the $m \times n$ matrix of their coefficients. Let B be the reduced row echelon matrix determined by A and let g_{1}, \ldots, g_{r} be the linear polynomials coming from the nonzero rows of B. Use lex order with $x_{1}>\cdots>x_{n}$ and show that $\left\{g_{1}, \ldots, g_{r}\right\}$ is a Groebner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

