to be prepared for 12.01.2023

Exercise 44. Let R be a commutative ring with 1 . Prove the equivalence of the following statements.

1. Every ideal in R has a finite basis.
2. Each non empty set of ideals has an element that is maximal with respect to inclusion.
3. Each increasing chain of ideals terminates, i.e., if $M_{1} \subseteq M_{2} \subseteq \cdots$ is an ascending chain of ideals then there is an $N \in \mathbb{N}$ s.t. $\forall n \geq N \bar{M}_{n}=M_{N}$.

Note that this is true for submodules of a module over an arbitrary ring.
Exercise 45. Let \leq be a linear order on \mathbb{N}^{n} satisfying the 2 axioms

1. $\forall_{\alpha \in \mathbb{N}^{n}} 0 \leq \alpha$;
2. $\forall_{\alpha, \beta, \gamma \in \mathbb{N}^{n}}(\alpha \leq \beta \Rightarrow \alpha+\gamma \leq \beta+\gamma)$.

Show that \leq is a well-order, so that it is indeed a monomial order.

Hint: You may consider the relation \leq as a linear order of monomials in a polynomial ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and apply the Hilbert Basis Theorem.

Exercise 46. Show that the following relations on \mathbb{N}^{n} are monomial orders:

1. $\alpha<_{\text {lex }} \beta \Longleftrightarrow$ the leftmost nonzero entry in $\alpha-\beta$ is negative;
2. $\alpha<_{\text {grlex }} \beta \Longleftrightarrow \operatorname{deg} \alpha<\operatorname{deg} \beta$ or $\left(\operatorname{deg} \alpha=\operatorname{deg} \beta\right.$ and $\left.\alpha<_{\operatorname{lex}} \beta\right)$.

Exercise 47. Let $<$ be a monomial order on \mathbb{N}^{n}, and $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. For $f=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} x^{\alpha} \in R \backslash 0$, the multidegree of f is the greatest n-tuple of exponents occuring in f with a nonzero coefficient

$$
\operatorname{mdeg}(f)=\max \left\{\alpha \in \mathbb{N}^{n} \mid c_{\alpha} \neq 0\right\}
$$

Prove the following statements for $f, g \in R \backslash 0$:

1. $\operatorname{mdeg}(f g)=\operatorname{mdeg}(f)+\operatorname{mdeg}(g)$;
2. If $f+g \neq 0$ then $\operatorname{mdeg}(f+g) \leq \max \{\operatorname{mdeg}(f), \operatorname{mdeg}(g)\}$;
3. If $f+g \neq 0$ and $\operatorname{mdeg}(f) \neq \operatorname{mdeg}(g)$ then $\operatorname{mdeg}(f+g)=\max \{\operatorname{mdeg}(f), \operatorname{mdeg}(g)\}$.

Exercise 48. Given a monomial order on \mathbb{N}^{n}, the leading monomial $\operatorname{lm}(f)$ of a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \backslash 0$ is the monomial $x^{\operatorname{mdeg}(f)}$.
Thus, if $f=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} x^{\alpha}$, then $\operatorname{lm}(f)$ is the power product x^{α} with $\alpha=\max \left\{\beta \in \mathbb{N}^{n}: c_{\beta} \neq 0\right\}$. The leading coefficient of f is then $\operatorname{lc}(f)=c_{\operatorname{lm}(f)}$.
Consider the polynomial $f=2 x y^{2}-x y+x^{3}$ in the ring $\mathbb{F}[x, y]$. Find monomial orderings $<_{1}$ and $<_{2}$ so that $\operatorname{lm}_{<_{1}}(f) \neq \operatorname{lm}_{<_{2}}(f)$.

