to be prepared for 15.12.2022

Exercise 39. Let $p \in \mathbb{N}$ be a prime number and consider the ring homomorphism

$$
\mathbb{Z}[x] \longrightarrow \mathbb{Z}_{p}[x], f=\sum_{k} f_{k} x^{k} \mapsto \bar{f}=\sum_{k} \overline{f_{k}} x^{k} \text { where } \overline{f_{k}}=f_{k}+\langle p\rangle
$$

Show the validity of the following statement:

$$
\text { If } f, g \in \mathbb{Z}[x] \text { with }\|f\|_{\infty},\|g\|_{\infty}<\frac{p}{2} \text { then } \bar{f}=\bar{g} \Longleftrightarrow f=g
$$

Exercise 40. Let $f, g \in \mathbb{Z}[x]$. Show that $\|f g\|_{1} \leq\|f\|_{1} \cdot\|g\|_{1}$.
Exercise 41. Given the polynomials

$$
\begin{aligned}
& f(x)=x^{7}-3 x^{5}-2 x^{4}+13 x^{3}-15 x^{2}+7 x-1, \\
& g(x)=x^{6}-9 x^{5}+18 x^{4}-13 x^{3}+2 x^{2}+2 x-1
\end{aligned}
$$

compute their gcd $h \in \mathbb{Z}[x]$. Check whether the integer factors of the resultant of f / h and g / h are unlucky primes in the modular approach to gcd computation.

Exercise 42. Let $A=\left(a_{i j}\right) \in \mathbb{Z}^{n \times n}$ be a square matrix with integer entries. Set $\|A\|_{\infty}=\max _{1 \leq i, j \leq n}\left|a_{i j}\right|$. Prove that

$$
|\operatorname{det} A| \leq n^{n / 2}\|A\|_{\infty}^{n}
$$

Hint: You may produce a matrix $B \in \mathbb{Q}^{n \times n}$ by applying Gram-Schmidt (without normalization) to the columns of A and prove that this process preserves determinants. Then express $\operatorname{det} B$ in terms of the length (2-norms) of its column vectors and compare with the length of A 's columns.

Exercise 43. Let R be a Euclidean domain, $p \in R$ a prime and $f, g \in R[x] \backslash 0$ such that $p \nmid \operatorname{gcd}_{R}(\operatorname{lc}(f), \operatorname{lc}(g))$. Let \bar{f} denote the image of f in $\mathbb{F}=R /\langle p\rangle$ and assume hat $\operatorname{gcd}_{\mathbb{F}[x]}(\bar{f}, \bar{g})=1$. Prove that $\operatorname{gcd}_{R[x]}(f, g)=\operatorname{gcd}_{R}(\operatorname{cont}(f), \operatorname{cont}(g))$.

