to be prepared for 01.12.2022

Exercise 33. Let $f, g \in \mathbb{F}[x, y], \operatorname{deg}_{x} f=n, \operatorname{deg}_{x} g=m$ and $d \in \mathbb{N}$ so that $\operatorname{deg}_{y} f, \operatorname{deg}_{y} g \leq d$. Prove that

$$
\operatorname{deg}_{y} \operatorname{res}_{x}(f, g) \leq(n+m) d
$$

Exercise 34. Let $f=\sum_{k=0}^{n} f_{k} x^{k} \in \mathbb{C}[x]$ with $\operatorname{deg} f=n \geq 0$. Considering f as an element of \mathbb{C}^{n+1} we may assign to f the usual norms

$$
\|f\|_{p}=\left(\sum_{k=0}^{n}\left|f_{k}\right|^{p}\right)^{1 / p} \text { for } p \geq 1 \text { and }\|f\|_{\infty}=\max _{k}\left|f_{k}\right|
$$

Check the following relations:

1. $\|f\|_{\infty} \leq\|f\|_{2} \leq \sqrt{n+1}\|f\|_{\infty}$;
2. $\|f\|_{2} \leq\|f\|_{1} \leq(n+1)\|f\|_{\infty}$.

Exercise 35. Let $f \in \mathbb{C}[x]$ and $z \in \mathbb{C}$. Prove that

$$
\|(x-z) f\|_{2}=\|(\bar{z} x-1) f\|_{2}
$$

You may use $|w|^{2}=w \bar{w}$ for $w \in \mathbb{C}$ and that conjugation $w \mapsto \bar{w}$ is an automorphism of the field \mathbb{C}.
Exercise 36. For a complex polynomial $f \in \mathbb{C}[x]$ written as product of linear factors $f=f_{n}\left(x-z_{1}\right) \cdots\left(x-z_{n}\right)$, where $z_{k} \in \mathbb{C}$, the real number $M(f)$ is

$$
M(f)=\left|f_{n}\right| \cdot \prod_{k=1}^{n} \max \left(1,\left|z_{k}\right|\right)
$$

Prove the following statements.

1. $f, g \in \mathbb{C}[x] \Rightarrow M(f g)=M(f) \cdot M(g)$ and $M(f) \geq|\operatorname{lc}(f)|$;
2. $f \in \mathbb{C}[x] \Rightarrow M(f) \leq\|f\|_{2}$.

Hint to point 2:

Sort the zeros z_{1}, \ldots, z_{n} of f so that $\left|z_{j}\right| \geq\left|z_{j+1}\right|(j=1, \ldots, n-1)$ and let $k=\max \left\{j:\left|z_{j}\right|>1\right\}$. Then show that $M(f)$ equals the absolute value of the leading coefficient of the polynomial

$$
g=\operatorname{lc}(f) \cdot \prod_{j=1}^{k}(\bar{z} x-1) \cdot \prod_{j=k+1}^{n}\left(x-z_{j}\right)
$$

so that $M(f)^{2} \leq\|g\|_{2}^{2}$. Then by repeatedly applying the identity in Ex. 35 prove that $\|g\|_{2}^{2}=\|f\|_{2}^{2}$.
Exercise 37. If $f, h \in \mathbb{C}[x]$ and $h \mid f$, prove that

$$
\|h\|_{1} \leq 2^{\operatorname{deg} h} M(h) \leq 2^{\operatorname{deg} h}\left|\frac{\operatorname{lc}(h)}{\operatorname{lc}(f)}\right| \cdot\|f\|_{2}
$$

Hint: Write $h=\operatorname{lc}(h) \prod_{j}\left(x-z_{j}\right)$ as product of linear factors and note that each z_{j} is a zero of f. Derive from this that $M(h) \leq M(f)$. Then express the coefficients of h as (the elementary symmetric) functions in the z_{j}.

Exercise 38. Let now $f, g, h \in \mathbb{Z}[x]$ (integer coefficients) with degress $n=\operatorname{deg} f \geq 1, m=\operatorname{deg} g, k=\operatorname{deg} h$, and assume that $g h \mid f$ in $\mathbb{Z}[x]$. Prove that

$$
\|g\|_{1}\|h\|_{1} \leq 2^{m+k}\|f\|_{2} \leq(n+1)^{1 / 2} \cdot 2^{m+k}\|f\|_{\infty}
$$

Derive from this that

$$
\|h\|_{\infty} \leq\|h\|_{2} \leq 2^{k}\|f\|_{2} \leq 2^{k}\|f\|_{1} \text { and }\|h\|_{\infty} \leq\|h\|_{2} \leq(n+1)^{1 / 2} \cdot 2^{k}\|f\|_{\infty}
$$

