to be prepared for 01.12.2022

Exercise 33. Let $f, g \in \mathbb{F}[x, y]$, $\deg_x f = n$, $\deg_x g = m$ and $d \in \mathbb{N}$ so that $\deg_y f, \deg_y g \leq d$. Prove that

$$\deg_y \operatorname{res}_x(f,g) \le (n+m)d.$$

Exercise 34. Let $f = \sum_{k=0}^{n} f_k x^k \in \mathbb{C}[x]$ with deg $f = n \ge 0$. Considering f as an element of \mathbb{C}^{n+1} we may assign to f the usual norms

$$||f||_p = \left(\sum_{k=0}^n |f_k|^p\right)^{1/p}$$
 for $p \ge 1$ and $||f||_{\infty} = \max_k |f_k|.$

Check the following relations:

- 1. $||f||_{\infty} \le ||f||_2 \le \sqrt{n+1} ||f||_{\infty};$
- 2. $||f||_2 \le ||f||_1 \le (n+1)||f||_{\infty}$.

Exercise 35. Let $f \in \mathbb{C}[x]$ and $z \in \mathbb{C}$. Prove that

$$||(x-z)f||_2 = ||(\overline{z}x-1)f||_2.$$

You may use $|w|^2 = w\overline{w}$ for $w \in \mathbb{C}$ and that conjugation $w \mapsto \overline{w}$ is an automorphism of the field \mathbb{C} .

Exercise 36. For a complex polynomial $f \in \mathbb{C}[x]$ written as product of linear factors $f = f_n(x - z_1) \cdots (x - z_n)$, where $z_k \in \mathbb{C}$, the real number M(f) is

$$M(f) = |f_n| \cdot \prod_{k=1}^n \max(1, |z_k|).$$

Prove the following statements.

1.
$$f, g \in \mathbb{C}[x] \Rightarrow M(fg) = M(f) \cdot M(g)$$
 and $M(f) \ge |\operatorname{lc}(f)|;$

2. $f \in \mathbb{C}[x] \Rightarrow M(f) \le ||f||_2$.

Hint to point 2:

Sort the zeros z_1, \ldots, z_n of f so that $|z_j| \ge |z_{j+1}|$ $(j = 1, \ldots, n-1)$ and let $k = \max\{j : |z_j| > 1\}$. Then show that M(f) equals the absolute value of the leading coefficient of the polynomial

$$g = \operatorname{lc}(f) \cdot \prod_{j=1}^{k} (\overline{z}x - 1) \cdot \prod_{j=k+1}^{n} (x - z_j)$$

so that $M(f)^2 \leq ||g||_2^2$. Then by repeatedly applying the identity in Ex. 35 prove that $||g||_2^2 = ||f||_2^2$.

Exercise 37. If $f, h \in \mathbb{C}[x]$ and h|f, prove that

$$||h||_1 \le 2^{\deg h} M(h) \le 2^{\deg h} \left| \frac{\operatorname{lc}(h)}{\operatorname{lc}(f)} \right| \cdot ||f||_2.$$

Hint: Write $h = lc(h) \prod_j (x - z_j)$ as product of linear factors and note that each z_j is a zero of f. Derive from this that $M(h) \leq M(f)$. Then express the coefficients of h as (the elementary symmetric) functions in the z_j .

Exercise 38. Let now $f, g, h \in \mathbb{Z}[x]$ (integer coefficients) with degress $n = \deg f \ge 1, m = \deg g, k = \deg h$, and assume that gh|f in $\mathbb{Z}[x]$. Prove that

$$||g||_1 ||h||_1 \le 2^{m+k} ||f||_2 \le (n+1)^{1/2} \cdot 2^{m+k} ||f||_{\infty}.$$

Derive from this that

 $||h||_{\infty} \leq ||h||_{2} \leq 2^{k} ||f||_{2} \leq 2^{k} ||f||_{1} \text{ and } ||h||_{\infty} \leq ||h||_{2} \leq (n+1)^{1/2} \cdot 2^{k} ||f||_{\infty}.$