to be prepared for 24.11.2022

Exercise 27. Let R be a UFD, $f, g \in R[x]$ and $h = \text{GCD}_{R[x]}(f, g)$. Prove that

- 1. $\operatorname{cont}(h) = \operatorname{gcd}_R(\operatorname{cont}(f), \operatorname{cont}(g))$ and $\operatorname{pp}(h) = \operatorname{GCD}_{R[x]}(\operatorname{pp}(f), \operatorname{pp}(g));$
- 2. $h = \operatorname{gcd}_R(\operatorname{cont}(f), \operatorname{cont}(g)) \cdot \operatorname{GCD}_{R[x]}(\operatorname{pp}(f), \operatorname{pp}(g));$
- 3. If f or g is primitive then so is h.

Exercise 28. Prove the following statement for univariate polynomials:

Let $f, g \in \mathbb{F}[x]$ where \mathbb{F} denotes a field. Then

$$gcd(f,g) \neq 1 \iff \exists_{s,t \in \mathbb{F}[x] \setminus 0} (sf + tg = 0 \land \deg s < \deg g \land \deg t < \deg f).$$

Exercise 29. Let $f, g \in \mathbb{F}[x] \setminus 0$ with deg f = n, deg g = m. Consider the map

 $\varphi \colon \mathbb{F}[x]_{\leq m} \times \mathbb{F}[x]_{\leq n} \to \mathbb{F}[x]_{\leq m+n}, \ \varphi(s,t) = sf + tg.$

Write down those (ordered) \mathbb{F} -bases of $\mathbb{F}[x]_{\leq m} \times \mathbb{F}[x]_{\leq n}$ and of $\mathbb{F}[x]_{\leq m+n}$ so that the Sylvester matrix $\operatorname{Syl}(f,g)$ (in the version that is introduced in the lecture) is indeed the matrix of φ .

Exercise 30. Let R be a UFD and $f, g \in R[x]$ not both zero. Prove that

$$gcd(f,g) \in R[x] \setminus R \iff res(f,g) = 0.$$

Hint: Take R as embedded in its quotient field $\mathbb{F} = Q(R)$ and note that there is a commutative diagram

$$\begin{split} \mathbb{F}[x] \times \mathbb{F}[x] \xrightarrow{\mathrm{res}} \mathbb{F} \\ & \uparrow \\ R[x] \times R[x] \xrightarrow{\mathrm{res}} R \end{split}$$

Thus, res(f,g) is an element of R, no matter whether the resultant is taken over R or over \mathbb{F} . Now reformulate the vanishing of the resultant as a property of a (normalized) GCD.

Exercise 31. Let R be an integral domain, $f, g \in R[x] \setminus 0$. Prove that there are polynomials $s, t \in R[x]$ with deg $s < \deg g$ and deg $t < \deg f$ such that $\operatorname{res}(f,g) = sf + tg$. Show that s and t are unique in case that $\operatorname{res}(f,g) \neq 0$.

Hint: You may use Linear Algebra to find a desired representation over the quotient field of R. Then demonstrate that s and t are in R[x].

Exercise 32. Let R be a commutative ring with 1, $I \triangleleft R$ an ideal and denote the value of a polynomial h under the surjective ring homomorphism $R[x] \rightarrow R/I[x]$ by \overline{h} , i.e., if $h = \sum_{k=0}^{n} h_k x^k$, then

$$\overline{h} = \sum_{k=0}^{n} (h_k + I) \, x^k.$$

Note that this map is an extension of the canonical epimorphism $R \to R/I$ so that the same notation applies to ring elements $c \in R$ (considered as constant polynomials).

Let $f, g \in R[x] \setminus 0$ and assume that $\overline{\operatorname{lc}(f)}$ is not a zero divisor in R/I. Show that

 $\overline{\operatorname{res}(f,g)} = 0 \iff \operatorname{res}\left(\overline{f},\overline{g}\right) = 0.$