## to be prepared for 24.11.2022

Exercise 27. Let $R$ be a UFD, $f, g \in R[x]$ and $h=\operatorname{GCD}_{R[x]}(f, g)$. Prove that

1. $\operatorname{cont}(h)=\operatorname{gcd}_{R}(\operatorname{cont}(f), \operatorname{cont}(g))$ and $\mathrm{pp}(h)=\operatorname{GCD}_{R[x]}(\mathrm{pp}(f), \operatorname{pp}(g))$;
2. $h=\operatorname{gcd}_{R}(\operatorname{cont}(f), \operatorname{cont}(g)) \cdot \operatorname{GCD}_{R[x]}(\operatorname{pp}(f), \operatorname{pp}(g))$;
3. If $f$ or $g$ is primitive then so is $h$.

Exercise 28. Prove the following statement for univariate polynomials:
Let $f, g \in \mathbb{F}[x]$ where $\mathbb{F}$ denotes a field. Then

$$
\operatorname{gcd}(f, g) \neq 1 \Longleftrightarrow \exists_{s, t \in \mathbb{F}[x] \backslash 0}(s f+t g=0 \wedge \operatorname{deg} s<\operatorname{deg} g \wedge \operatorname{deg} t<\operatorname{deg} f)
$$

Exercise 29. Let $f, g \in \mathbb{F}[x] \backslash 0$ with $\operatorname{deg} f=n, \operatorname{deg} g=m$. Consider the map

$$
\varphi: \mathbb{F}[x]_{<m} \times \mathbb{F}[x]_{<n} \rightarrow \mathbb{F}[x]_{<m+n}, \varphi(s, t)=s f+t g
$$

Write down those (ordered) $\mathbb{F}$-bases of $\mathbb{F}[x]_{<m} \times \mathbb{F}[x]_{<n}$ and of $\mathbb{F}[x]_{<m+n}$ so that the Sylvester matrix $\operatorname{Syl}(f, g)$ (in the version that is introduced in the lecture) is indeed the matrix of $\varphi$.

Exercise 30. Let $R$ be a UFD and $f, g \in R[x]$ not both zero. Prove that

$$
\operatorname{gcd}(f, g) \in R[x] \backslash R \Longleftrightarrow \operatorname{res}(f, g)=0
$$

Hint: Take $R$ as embedded in its quotient field $\mathbb{F}=Q(R)$ and note that there is a commutative diagram


Thus, $\operatorname{res}(f, g)$ is an element of $R$, no matter whether the resultant is taken over $R$ or over $\mathbb{F}$. Now reformulate the vanishing of the resultant as a property of a (normalized) GCD.

Exercise 31. Let $R$ be an integral domain, $f, g \in R[x] \backslash 0$. Prove that there are polynomials $s, t \in R[x]$ with $\operatorname{deg} s<\operatorname{deg} g$ and $\operatorname{deg} t<\operatorname{deg} f$ such that $\operatorname{res}(f, g)=s f+t g$. Show that $s$ and $t$ are unique in case that $\operatorname{res}(f, g) \neq 0$.

Hint: You may use Linear Algebra to find a desired representation over the quotient field of $R$. Then demonstrate that $s$ and $t$ are in $R[x]$.

Exercise 32. Let $R$ be a commutative ring with $1, I \triangleleft R$ an ideal and denote the value of a polynomial $h$ under the surjective ring homomorphism $R[x] \rightarrow R / I[x]$ by $\bar{h}$, i.e., if $h=\sum_{k=0}^{n} h_{k} x^{k}$, then

$$
\bar{h}=\sum_{k=0}^{n}\left(h_{k}+I\right) x^{k}
$$

Note that this map is an extension of the canonical epimorphism $R \rightarrow R / I$ so that the same notation applies to ring elements $c \in R$ (considered as constant polynomials).
Let $f, g \in R[x] \backslash 0$ and assume that $\overline{\operatorname{lc}(f)}$ is not a zero divisor in $R / I$. Show that

$$
\overline{\operatorname{res}(f, g)}=0 \Longleftrightarrow \operatorname{res}(\bar{f}, \bar{g})=0
$$

