to be prepared for 27.10.2022

Exercise 16. Let \mathbb{F} denote a field, and $a, b \in \mathbb{F}$ polynomials with $\operatorname{deg} a<(\operatorname{deg} b) \cdot e$, where $e \in \mathbb{N} \backslash 0$. Develop an algorithm that computes $a_{1}, \ldots, a_{e} \in \mathbb{F}[x]$ with $\operatorname{deg} a_{i}<\operatorname{deg} b(1 \leq i \leq e)$ s.t.

$$
\frac{a}{b^{e}}=\frac{a_{1}}{b}+\frac{a_{2}}{b^{2}}+\cdots+\frac{a_{e}}{b^{e}} .
$$

Hint: Consider polynomial division in a Horner scheme style.
Exercise 17. Let R be a Euclidean domain, $m_{1}, \ldots, m_{p} \in R \backslash 0$ pairwise coprime, and set $m=m_{1} \cdots m_{p}$. Give a precise proof that the rings $R /\langle m\rangle$ and $\prod_{i=1}^{p} R /\left\langle m_{i}\right\rangle$ are isomorphic.

Exercise 18. Let R be a Euclidean domain. Prove the following:

1. If $m_{1}, \ldots, m_{n} \in R \backslash 0$ are pairwise coprime and $M=\prod_{i=1}^{n-1} m_{i}$. Then m_{n} and M are relatively prime.
2. Assume that $r, r^{\prime} \in R$, and $m_{1}, m_{2} \in R \backslash 0$ are coprime. Then $r \equiv r^{\prime} \bmod$ m_{1} and $r \equiv r^{\prime} \bmod m_{2}$ if and only if $r \equiv r^{\prime} \bmod m_{1} m_{2}$.

Exercise 19. Use the facts formulated in the previous exercise for developing a recursive algorithm that computes a solution of a Chinese remainder problem in a Euclidean domain.

Exercise 20. Solve the Chinese remainder problem

$$
\begin{array}{ccc}
r \equiv & 62 & \bmod 79 \\
r \equiv & 66 & \bmod 83 \\
r \equiv & 72 & \bmod 89
\end{array}
$$

over the integers.

