to be prepared for 27.10.2022

Exercise 11. For $m \in \mathbb{Z}$ let \mathbb{Z}_{m} denote the group $\mathbb{Z} / m \mathbb{Z}$. Prove the following statement:

$$
\text { If } k, n \in \mathbb{Z} \text { are relatively prime then } \mathbb{Z}_{k n} \cong \mathbb{Z}_{k} \oplus \mathbb{Z}_{n} \text {. }
$$

Exercise 12. Let R be a ring of prime characteristic p and $a, b \in R$. Prove:

$$
\begin{aligned}
(a+b)^{p} & =a^{p}+b^{p} \\
(a+b)^{p^{n}} & =a^{p^{p^{n}}}+b^{p^{n}}, \text { for } n \in \mathbb{N} .
\end{aligned}
$$

Exercise 13. Let $p \in \mathbb{Z}$ be a prime. Implement an algorithm that inverts elements of the field $\mathbb{F}_{p}=\mathbb{Z} /\langle p\rangle$.

Apply this algorithm to performing inversion in $\mathbb{F}_{p}[x] /\langle f\rangle$, where $f \in \mathbb{F}_{p}[x]$ is irreducible. You may use the mathematica notebook
http : //www.risc.jku.at/education/courses/ws2022/CA/Examples.nb
Exercise 14. Let K denote a finite field. Let q be the order of K (i.e., K has q elements) and consider the polynomial $f=x^{q}-x \in K[x]$.

1. Prove that there is a unique prime $p \in \mathbb{N}$ such that $\mathbb{F}_{p}=\mathbb{Z} /\langle p\rangle$ is a subfield of K. Conclude that $q=p^{n}$ for some $n \in \mathbb{N}$.
2. Show that the polynomial f has every element of K as a root.
3. Write down the factorization of f into irreducible factors.

Exercise 15. If K is an arbitrary field, a (univariate) polynomial function over K is a mapping $\varphi: K \rightarrow K$ that results from plugging in field elements into a fixed polynomial $f \in K[x]$, that is,

$$
\exists_{f \in K[x]} \forall_{a \in K} \varphi(a)=f(a) .
$$

The set P_{K} of all polynomial functions $K \rightarrow K$ has the structure of an algebra over K. Describe this algebra in case that K is a finite field. How many elements has P_{K} ?

