to be prepared for 20.10.2022

Exercise 6. We can check that the polynomial ring $K[x]$ over a field K is an integral domain by considering the degree function.

1. Prove, by a similar argument, that also the ring $K[[x]]$ of formal power series is an integral domain. Moreover show that $\mathrm{K}[[\mathrm{x}]]$ is an Euclidean domain by introducing an appropriate function and verifying the required properties.
2. Show that $K[[x]]$ is a local ring.

Exercise 7. Let K be a field, and $f, g \in K[x]$ with $\operatorname{deg}(f)=n, \operatorname{deg}(g)=m$.

1. Show that polynomial division with remainder can be performed with at most $(2 m+1)(n-m+1)+1$ field operations.
2. What is the maximum number of operations when we assume that f and g are monic?

Exercise 8. Consider a polynomial $f \in R[x]$ of degree $n \geq 0$, where R is a commutative ring with 1 . The weight of f is

$$
w(f)=\operatorname{card}\left\{k<n \mid f_{k} \neq 0\right\}
$$

that is, the number of nonzero coefficients besides the leading coefficient f_{n}. The sparse representation of f is a list $\left(i, f_{i}\right)_{i \in I}$ s.t. $f=\sum_{i \in I} f_{i} x^{i}$. Show that two polynomials $f, g \in R[x]$ can be multiplied in sparse representation using at most

$$
2 w(f) w(g)+w(f)+w(g)
$$

arithmetic operations.
Exercise 9. Show that multiplication of two matrices $A \in R^{m \times n}$ and $B \in R^{n \times p}$ (where R is a ring) takes $(2 n-1) m p$ arithmetic operations in R.

Exercise 10. Let I be a unique factorization domain. Every $f \in I[x]$ can be decomposed into "content \times primitive part"

$$
f=\operatorname{cont}(f) \operatorname{pp}(f)
$$

where $\operatorname{cont}(f) \in I$ and $\operatorname{pp}(f) \in I[x]$ is primitive, i.e., the GCD of all coefficients is 1 . This decomposition is unique up to multiplication by units.

Given $f, g \in I[x]$, we write $f \sim g$ if there is a unit ε with $g=\varepsilon f$. Then prove the following:

1. $\operatorname{cont}(f g) \sim \operatorname{cont}(f) \cdot \operatorname{cont}(g)$
2. $\operatorname{pp}(f g) \sim \operatorname{pp}(f) \cdot \operatorname{pp}(g)$.
