to be prepared for 13.10.2022

Exercise 1. Consider the integers $a=215712, b=739914$. Determine the gcd of a and b and integers s, t such that $\operatorname{gcd}(a, b)=s a+t b$.
Exercise 2. Compute the GCD of

$$
\begin{aligned}
& f(x)=6 x^{5}+2 x^{4}-19 x^{3}-6 x^{2}+15 x+9 \\
& g(x)=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2 .
\end{aligned}
$$

Exercise 3. Consider the polynomials f_{1}, \ldots, f_{m} in the ring $K\left[x_{1}, \ldots, x_{n}\right]$. Prove that the set

$$
\left\{\sum_{j=1}^{m} h_{j} f_{j} \mid \forall_{1 \leq j \leq m} h_{j} \in K\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

is the smallest ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ that contains the set $\left\{f_{1}, \ldots, f_{m}\right\}$.

Exercise 4.

1. Consider the system of equations

$$
\begin{aligned}
2 x^{4}-3 x^{2} y+y^{4}-2 y^{3}+y^{2} & =0 \\
4 x^{3}-3 x y & =0 \\
4 y^{3}-3 x^{2}-6 y^{2}+2 & =0
\end{aligned}
$$

Compute all solutions.
2. The same for

$$
\begin{aligned}
1+8 x y+2 y^{2}+8 x y^{3}+y^{4}-16 x^{2} & =0 \\
8 x+4 y+24 x y^{2}+4 y^{3} & =0 \\
8 y+8 y^{3}-32 x & =0 .
\end{aligned}
$$

This can be done by hand or using a computer algebra system.
Exercise 5. Let R be a commutative ring with 1, and $S \subseteq R$ a multiplicative monoid. Consider the equivalence relation on $R \times S$ given by

$$
\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right) \Longleftrightarrow \exists s_{3} \in S \text { such that } s_{3} s_{2} r_{1}=s_{3} s_{1} r_{2}
$$

1. Let $R\left[S^{-1}\right]$ denote the quotient $R \times S / \sim$, write $\frac{r}{s}$ for the equivalence class of the pair (r, s) and define addition and multiplication on $R\left[S^{-1}\right]$ by

$$
\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{s_{2} r_{1}+s_{1} r_{2}}{s_{1} s_{2}}, \quad \frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}=\frac{r_{1} r_{2}}{s_{1} s_{2}} .
$$

Verify that these are well defined operations turning $R\left[S^{-1}\right]$ into a commutative ring with 1 .
2. Define the map

$$
\eta: R \longrightarrow R\left[S^{-1}\right], r \mapsto \frac{r}{1}
$$

Check that this is a well defined homomorphism of rings.
3. Give a description of η 's kernel. Formulate conditions on the monoid S that make R embedded in $R\left[S^{-1}\right]$.

Note that, for an integral domain R and monoid $S=R \backslash 0$, this construction provides the usual quotient field $Q(R)$.

Exercise 6. We can check that the polynomial ring $K[x]$ over a field K is an integral domain by considering the degree function.

1. Prove, by a similar argument, that also the ring $K[[x]]$ of formal power series is an integral domain. Moreover show that $\mathrm{K}[[\mathrm{x}]]$ is an Euclidean domain by introducing an appropriate function and verifying the required properties.
2. Show that $K[[x]]$ is a local ring.
