Sheet 12

Discussion on Jan. 27, 2022

Exercise 1 Prove the following extension of Theorem 7.21 (l'Hospital's Rule): Given two functions $f, g:(0, \infty) \rightarrow \mathbb{R}$ which are both differentiable on $(0, \infty)$,

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Hint: Consider substituting $1 / x$ in for x, and taking $\lim _{x \rightarrow 0^{+}}$.
Exercise 2 Let $m, n \in \mathbb{N}$, and $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}, b_{m}, b_{m-1}, \ldots, b_{1}, b_{0} \in \mathbb{R}$. With l'Hospital's Rule in mind, justify our familiar rule that

$$
\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}= \begin{cases}0, & n<m \\ \frac{a_{n}}{b_{m}}, & n=m \\ \infty, & n>m\end{cases}
$$

Exercise 3 Using l'Hospital's Rule, compute

$$
\lim _{x \rightarrow \infty} \frac{x^{5}}{e^{x}}
$$

Does this result depend on the fact that the power of x in the numerator is 5 ? What if it was 7 , or 10 , or 100 ? What does this tell you about how fast e^{x} grows, compared to polynomials in x ?

Exercise 4 Using l'Hospital's Rule, and remembering that $x^{1 / n}=\sqrt[n]{x}$ compute

$$
\lim _{x \rightarrow \infty} \frac{\sqrt[3]{x}}{\ln (x)}
$$

Does this result depend on the fact that the root of x in the numerator is 3 ? What if it was 5 , or 55 , or 1000 ? What does this tell you about how fast $\ln (x)$ grows, compared to roots of x ?

Exercise 5 Compute the following antiderivatives.
a) $\int\left(9 x^{3}-7 x^{2}+1\right) d x$
b) $\int \sin (x)^{2} d x$ Hint: Trigonometric identities involving $\sin (x)^{2}$
c) $\int \sec (x)^{2} d x$

Exercise 6 Compute the following antiderivatives.
a) $\int x \ln (x) d x$
b) $\int\left(-18 x^{-1}+23 x^{-2}\right) d x$
c) $\int\left(18 x^{-4}-2 x^{-3}+3 x^{-1}\right) d x$

Exercise 7 Consider the function

$$
f(x)=\sqrt{x}
$$

on the interval $(0,3)$.
a) Compute the Taylor polynomial $T_{n}(x)$ centered on $x_{0}=1$, as given in Theorem 7.28. What is the coefficient of $(x-1)^{k}$?
b) Consider the Taylor polynomial $T_{n}(2)$. What does the error term $R_{n+1}(2,1)$ look like?
c) Give a bound on how large n must be in order to approximate $\sqrt{2}$ to d decimal places. It doesn't have to be an optimal bound.

Exercise 8 This problem is to show how Theorem 7.25 can be used to estimate the size of an atom. The energy of an electron in a hydrogen atom can be estimated by

$$
E=-\underbrace{k e^{2}}_{\mathrm{a}} \cdot \frac{1}{x}+\underbrace{\hbar^{2} / 2 m}_{\mathrm{b}} \cdot \frac{1}{x^{2}} .
$$

The term $-\frac{k e^{2}}{x}$ gives the classical energy of the electron to the nucleus, while the term $\frac{\hbar^{2}}{2 m x^{2}}$ is a quantum mechanical effect. Here, e is the charge of the electron, m is the mass of the electron, k and \hbar are certain physical constants, and x is the distance of the electron from the nucleus. Note: e, m, k, \hbar are all positive constants.
a) Compute the first derivative $E^{\prime}(x)$. Hint: do not be intimidated by the fancy symbols. Think of the equation E as $E(x)=-a \cdot x^{-1}+b \cdot x^{-2}$, with $a, b>0$ as positive constants.
b) Set $E^{\prime}(x)=0$ and solve for x.
c) Denote x_{0} as the solution to (b) above. Compute $E^{\prime \prime}\left(x_{0}\right)$. What can you say about the energy at $x=x_{0}$?
d) In physics, particles tend to occupy the minimal energy state. With this in mind, what does $x=x_{0}$ represent?
e) The constants \hbar, k, m, e can be estimated by the following:

$$
\begin{aligned}
\hbar & =1.0546 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}, \\
k & =8.988 \times 10^{9} \frac{\mathrm{~kg} \cdot \mathrm{~m}^{3}}{\mathrm{~s}^{2} \mathrm{C}^{2}}, \\
m & =9.109 \times 10^{-31} \mathrm{~kg}, \\
e & =1.602 \times 10^{-19} \mathrm{C} .
\end{aligned}
$$

Substitute these numbers for the solution x_{0} in (b) in order to give a numerical estimation of x_{0}. Hint: This is a straightforward computation. Don't worry about the units on the right of each number, e.g., J•s or $\frac{\mathrm{kg} \cdot \mathrm{m}^{3}}{\mathrm{~s}^{2} \mathrm{C}^{2}}$. These are there for reasons connected with the underlying physics.

