Sheet 8

Discussion on Dec. 2, 2021

Exercise 1 Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=|x|$ is continuous on its entire domain.

Exercise 2 Let $f:(a, b) \rightarrow \mathbb{R}$ be a continuous function with $a \in \mathbb{R} \cup\{-\infty\}$ and $b \in$ $\mathbb{R} \cup\{\infty\}$, and let $x \in(a, b)$. Prove that the following statements are equivalent:
a) f is continuous at x.
b) For all $\epsilon>0$ there exists some $\delta>0$ such that for all $\zeta \in(a, b)$:

$$
|f(\zeta)-f(x)|<\epsilon, \text { whenever }|\zeta-x|<\delta
$$

Exercise 3 Let $\left(h_{n}\right)_{n \geq 0}$ be an arbitrary but fixed sequence converging to 0 such that $h_{n} \neq 0$ for every $n \geq 0$. Show that

$$
\lim _{n \rightarrow \infty}\left|h_{n}\right| \sin \left(\frac{1}{h_{n}}\right)=0
$$

Exercise 4 Let $f:(a, b) \rightarrow \mathbb{R}$ and $g:(a, b) \rightarrow \mathbb{R}$ both be continuous in (a, b), and that $g(x) \neq 0$ for all $x \in(a, b)$. Show that f / g is continuous on (a, b).

Exercise 5 Let $f:(a, b) \rightarrow(c, d)$ and $g:(c, d) \rightarrow \mathbb{R}$ both be continuous on their domains. Show that $g \circ f:(a, b) \rightarrow \mathbb{R}, g \circ f(x)=g(f(x))$ is continuous on (a, b).

Exercise 6 Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)=1.6 x^{3}-1.76 x^{2}-68.16 x
$$

With a calculator, compute $f(x)$ for $x=7+\frac{n}{100}$ for $1 \leq n \leq 99$. Notice that this takes place for x in the interval $(7,8)$. What can you say about $f(x)$ for x in this interval? Does $f(x)$ vanish? If so, where?

Exercise 7 Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
h(x)=\sin (x) .
$$

With a calculator, compute $h(x)$ for $x=3+\frac{n}{100}$ for $1 \leq n \leq 99$. Notice that this takes place for x in the interval $(3,4)$. Estimate where $h(x)$ must vanish.

Exercise 8 Consider the function $w: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
w(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Is w a continuous function? Hint: Is \mathbb{Q} dense in \mathbb{R} ?

