Analysis Exercises

Wintersemester 2021

https://www.risc.jku.at/education/courses/ws2021/mathematik1/

Sheet 4

Discussion on Nov. 4, 2021

Exercise 1 Let \mathcal{A} be an ordered set, and let $\mathcal{B} \subseteq \mathcal{A}$. The set \mathcal{B} is said to be *dense subset* of \mathcal{A} if, for any $a \in \mathcal{A} \setminus B$ there exists some $b \in \mathcal{B}$ arbitrarily close to a.

- a) Is \mathbb{Z} dense in \mathbb{R} ?
- b) Is \mathbb{Q} dense in \mathbb{R} ?
- c) Is $\{n\pi : n \in \mathbb{Z}\}$ dense in \mathbb{R} ?

Justify your answers.

Exercise 2 Prove the first part of Lemma 1.40: For any two real numbers $x, y \in \mathbb{R}$, we have:

$$|x+y| \le |x| + |y|.$$
(1)

Exercise 3 Prove Lemma 1.42.

Exercise 4 Let a and b be computable real numbers. Using Definition 1.43, show that a + b is also computable.

Exercise 5 Prove the Pythagorean Theorem (Theorem 2.6). Hint: Consult Euclid.

Exercise 6 Prove Lemma 2.7.

Exercise 7 Which of these functions are injective, surjective, or bijective? Pay close attention to the domain and range.

a)
$$f : \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R} \setminus \{0\}, x \mapsto \frac{1}{x}$$
.

b)
$$g: (-\infty, 0] \longrightarrow [0, \infty), x \mapsto x^2 + 2.$$

- c) $g: (-\infty, 0] \longrightarrow [2, \infty), x \mapsto x^2 + 2.$
- d) $g: (-\infty, 1] \longrightarrow [2, \infty), x \mapsto x^2 + 2.$

Exercise 8 Suppose that I take a meterstick and place it at a right angle to the ground in Linz. It casts a shadow that is 17.63 cm in length.

- a) Calculate the angles for the resulting right triangle.
- b) At the same time, my friend tries the same experiment in Rome, 727 km away. She gets a shadow length of 6.06 cm. Calculate the angles for her triangle.
- c) Incidentally, what is the circumference of the Earth?