$18\ {\rm March}\ 2022$

Name:

Studienkennzahl:

Matrikelnummer:

Final Exam / Klausur Computer Algebra (326.105) (no books / ohne Unterlagen)

You may give answers either in English or in German. Man kann auf Englisch oder Deutsch antworten.

Explain all your answers. Simply giving the result or "yes/no" is not enough. Begründe alle Antworten. Nur das Ergebnis oder "ja/nein" genügt nicht.

- (1) (a) Give a definition of a Euclidean domain.
 (b) Prove: In a Euclidean domain E every ideal I is generated by one element (i.e., E is a principal ideal domain). Complete the following proof: If I = ⟨0⟩, then ... Otherwise let a ∈ I* s.t. deg(a) is minimal.
- (2) Prove:

Let K be a field, and $a(x), b(x) \in K[x] \setminus K$. a(x) and b(x) have a factor c(x) of degree greater than 0 if and only if there are polynomials $p(x), q(x) \in K[x]$, not both equal to 0, with $\deg(p) < \deg(b)$, $\deg(q) < \deg(a)$ and p(x)a(x) + q(x)b(x) = 0.

(b) Consider $a(x) = x^2 - x^2 + x^2 - x^2 - 3x - 1$, $b(x) = 3x^2 - 3x^2 - 4x^2 + 4x^2 - 2x - 3x^2 - 3x^2 - 4x^2 + 4x^2 - 2x - 3x^2 - 3x^2 - 3x^2 - 4x^2 + 4x^2 - 2x - 3x^2 - 3x^2 - 3x^2 - 3x^2 - 3x^2 - 4x^2 + 4x^2 - 2x - 3x^2 - 3x^$

- (4) Consider $G = \{3x^2 + 2y^2 2y, xy, y^3 y^2\}$ in $\mathbb{Q}[x, y]$. Is G a Gröbner basis for the corresponding ideal w.r.t. the lexicographic ordering with x > y?
- (5) Consider G as in Problem (4). Let I be the ideal generated by G in $\mathbb{Q}[x, y]$.
 - (a) Do the polynomials in I have a common root (in $\overline{\mathbb{Q}}^2$)?
 - (b) Is the set of common roots of polynomials in ${\cal I}$ finite?
 - (c) What is the vector space dimension of $\mathbb{Q}[x, y]_{/I}$ over the field \mathbb{Q} ?