Name: \qquad

Studienkennzahl: \qquad

Matrikelnummer: \qquad

Final Exam / Klausur

Computer Algebra (326.105)
(no books / ohne Unterlagen)

You may give answers either in English or in German. Man kann auf Englisch oder Deutsch antworten.

Explain all your answers. Simply giving the result or "yes/no" is not enough. Begründe alle Antworten. Nur das Ergebnis oder "ja/nein" genügt nicht.
(1) (a) Give a definition of a Euclidean domain.
(b) Prove: In a Euclidean domain E every ideal I is generated by one element (i.e., E is a principal ideal domain).
Complete the following proof:
If $I=\langle 0\rangle$, then ...
Otherwise let $a \in I^{*}$ s.t. $\operatorname{deg}(a)$ is minimal.
(2) Prove:

Let K be a field, and $a(x), b(x) \in K[x] \backslash K$.
$a(x)$ and $b(x)$ have a factor $c(x)$ of degree greater than 0
if and only if
there are polynomials $p(x), q(x) \in K[x]$, not both equal to 0 , with $\operatorname{deg}(p)<\operatorname{deg}(b)$, $\operatorname{deg}(q)<\operatorname{deg}(a)$ and $p(x) a(x)+q(x) b(x)=0$.
(3) For a polynomial $f(x) \in \mathbb{Z}[x]$ we denote the image of f modulo the prime p by $f_{(p)}(x)$.
(a) Consider $a(x)=x^{3}+2 x^{2}-1, b(x)=x^{3}-3 x-2$ in $\mathbb{Z}[x]$.

The gcd of $a_{(3)}(x), b_{(3)}(x)$ in $\mathbb{Z}_{3}[x]$ is $x+1$.
The gcd of $a_{(5)}(x), b_{(5)}(x)$ in $\mathbb{Z}_{5}[x]$ is $x^{2}+4 x+3$.
Can the gcd of $a(x), b(x)$ in $\mathbb{Z}[x]$ have degree 2?
(b) Consider $a(x)=x^{5}-x^{4}+x^{3}-x^{2}-3 x-1, b(x)=3 x^{5}-3 x^{4}-4 x^{3}+4 x^{2}-2 x-3$ in $\mathbb{Z}[x]$.
The greatest common divisor of a and b is $c(x)=x^{2}-x-1$.
The resultant of a / c and b / c is 343 .
Can the gcd of a and b in $\mathbb{Z}_{17}[x]$ have degree 3?
(4) Consider $G=\left\{3 x^{2}+2 y^{2}-2 y, x y, y^{3}-y^{2}\right\}$ in $\mathbb{Q}[x, y]$.

Is G a Gröbner basis for the corresponding ideal w.r.t. the lexicographic ordering with $x>y$?
(5) Consider G as in Problem (4). Let I be the ideal generated by G in $\mathbb{Q}[x, y]$.
(a) Do the polynomials in I have a common root (in $\overline{\mathbb{Q}}^{2}$)?
(b) Is the set of common roots of polynomials in I finite?
(c) What is the vector space dimension of $\mathbb{Q}[x, y]_{/ I}$ over the field \mathbb{Q} ?

