Due date: 14.12.2021

Exercise 28. Let K be a field and let $a \in K^{*}, s \in[X], g_{1}, g_{2} \in K[X]$, and $F \subseteq K[X]$. Prove the remaining parts of Lemma 4.2.14 from the lecture notes, i.e. show that
(a) $\longrightarrow_{F} \subseteq \gg$,
(b) \longrightarrow_{F} is Noetherian, and
(c) if $g_{1} \longrightarrow_{F} g_{2}$, then $a \cdot s \cdot g_{1} \longrightarrow_{F} a \cdot s \cdot g_{2}$.
Exercise 29. Provide an example of a locally confluent reduction relation which is not confluent.

Exercise 30. Fix an admissible ordering and consider the polynomial ring $R=K\left[x_{1}, \ldots, x_{n}\right]$ over the field K. Let $f \in R$ and $I \subseteq R$ be an ideal. Show that f can be written in the form $f=g+r$, where $g \in I, r \in R$ and no term of r is divisible by any element of $\operatorname{lpp}(I)$. Is this representation unique?

Exercise 31. Make yourself familiar with Buchberger's algorithm GRÖBNER_B from the lecture notes and compute a Gröbner basis for the following ideals:
(a) $\left\langle x y^{2}+y^{2}-x y-1, y^{2}-1\right\rangle \subseteq \mathbb{Q}[x, y]$, and
(b) $\left\langle u^{2} v+w+1, u^{2} w+v\right\rangle \subseteq \mathbb{Q}[u, v, w]$.

Use the lexicographic ordering with $x>y$ and $u>v>w$, respectively.
Exercise 32. Consider the polynomials $f=y-x^{2}$ and $g=z-x^{3}$. Prove or disprove: $\{f, g\}$ is a Gröbner basis of the ideal $\langle f, g\rangle \subseteq \mathbb{Q}[x, y, z]$ with respect to the lexicographic ordering with $x>y>z$. What would the result be if we choose a permutation of the variables, where x is not greater than y and z ?

This is the last exercise sheet!

Good luck with the projects!

